Skip to main content

Real-time Spindles Detection for Acoustic Neurofeedback

  • Conference paper
  • First Online:
Brain Function Assessment in Learning (BFAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10512))

Included in the following conference series:

Abstract

Real-time neurofeedback plays an increasing role in today’s clinical and basic neuroscience research. In this work, we present a real-time sleep EEG spindles detection algorithm fast enough to be used for real time acoustic feedback stimulation. We further highlight the architecture of a system that implements the algorithm and its experimental evaluation. This system can handle EEG data acquired by various means (i.e. conventional EEG systems, wireless sensors) and a response time of a few msecs has been achieved. The presented algorithm is dynamically adaptive and has accuracy similar to other well-known non real-time algorithms. Comparison and evaluation was performed using EEG data from an open database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lüthi, A.: Sleep Spindles: Where They Come From. What They Do. Neuroscientist 20(3), 243–256 (2014). doi:10.1177/1073858413500854. Epub 2013 Aug 27. Review. PubMed PMID: 23981852

    Google Scholar 

  2. De Gennaro, L., Ferrara, M.: Sleep spindles: an overview. Sleep Med. Rev. 7(5), 423–440 (2003). Review. PubMed PMID: 14573378

    Article  Google Scholar 

  3. Koupparis, A.M., Kokkinos, V., Kostopoulos, G.K.: Spindle power is not affected after spontaneous K-complexes during human NREM sleep. PLoS One 8(1), e54343 (2013). doi:10.1371/journal.pone.0054343. Epub 2013 Jan 10. PubMed PMID: 23326604; PubMed Central PMCID: PMC3542283

    Article  Google Scholar 

  4. Ioannides, A., Liu, L., Poghosyan, V., Kostopoulos, G.K: Using MEG to Understand the Progression of Light Sleep and the Emergence and Functional Roles of Spindles and K-Complexes. Frontiers in Human Neuroscience 11 (2017). doi:10.3389/fnhum.2017.00313

  5. McCormick, D.A., Bal, T.: Sensory gating mechanisms of the thalamus. Curr. Opin. Neurobiol. 4(4), 550–566 (1994). Review. PubMed PMID: 7812144

    Article  Google Scholar 

  6. Rosanova, M., Ulrich, D.: Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J. Neurosci. 25, 9398–9405 (2005). doi:10.1523/JNEUROSCI.2149-05.2005

    Article  Google Scholar 

  7. Ulrich, D.: Sleep Spindles as Facilitators of Memory Formation and Learning. Neural Plast. 2016 (2016). 1796715. doi:10.1155/2016/1796715. Epub 2016 Mar 28. Review. PubMed PMID: 27119026; PubMed Central PMCID: PMC4826925

  8. Khazipov, R., Sirota, A., Leinekugel, X., Holmes, G.L., Ben-Ari, Y., Buzsáki, G.: Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004). doi:10.1038/nature03132

    Article  Google Scholar 

  9. Weiner, O.M., Dang-Vu, T.T.: Spindle Oscillations in Sleep Disorders: A Systematic Review. Neural Plast. 2016 (2016). 7328725. doi:10.1155/2016/7328725. Epub 2016 Mar 10. Review. PubMed PMID: 27034850; PubMed Central PMCID: PMC4806273

  10. Castelnovo, A., D’Agostino, A., Casetta, C., Sarasso, S., Ferrarelli, F.: Sleep Spindle Deficit in Schizophrenia: Contextualization of Recent Findings. Curr. Psychiatry Rep. 18(8), 72 (2016). doi:10.1007/s11920-016-0713-2. Review. PubMed PMID: 27299655

    Article  Google Scholar 

  11. Kostopoulos, G.: Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: The continuing development of a hypothesis. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 111(Suppl 2), S27–S38 (2000). doi:10.1016/S1388-2457(00)00399-0

    Article  Google Scholar 

  12. Astori, S., Wimmer, R.D., Lüthi, A.: Manipulating sleep spindles–expanding views on sleep, memory, and disease. Trends Neurosci. 36(12), 738–748 (2013). doi:10.1016/j.tins.2013.10.001. Epub 2013 Nov 6. Review. Erratum in: Trends Neurosci. 2014 Apr;37(4):243. PubMed PMID: 24210901

    Article  Google Scholar 

  13. Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M.L., Rana, M., Oblak, E., Birbaumer, N., Sulzer, J.: Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18(2), 86–100 (2017). doi:10.1038/nrn.2016.164. Epub 2016 Dec 22. Review. PubMed PMID: 28003656

    Article  Google Scholar 

  14. Antony, J.W., Paller, K.A.: Using Oscillating Sounds to Manipulate Sleep Spindles. Sleep 40(3) (2017). doi:10.1093/sleep/zsw068. PubMed PMID: 28364415

  15. Leminen, M.M., Virkkala, J., Saure, E., Paajanen, T., Zee, P.C., Santostasi, G., Hublin, C., Müller, K., Porkka-Heiskanen, T., Huotilainen, M., Paunio, T.: Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep. Sleep 40(3) (2017). doi:10.1093/sleep/zsx003. PubMed PMID: 28364428

  16. Papalambros, N.A., Santostasi, G., Malkani, R.G., Braun, R., Weintraub, S., Paller, K.A., Zee, P.C.: Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults. Frontiers in Human Neuroscience 11 (2017). doi:10.3389/fnhum.2017.00109

  17. Nonclercq, A. et al.: Sleep spindle detection through amplitude–frequency normal modelling. Journal of Neuroscience Methods 214, 192– 203 (2013)

    Google Scholar 

  18. Santostasi, G., Malkani, R., Riedner, B., Bellesi, M., Tononi, G., Paller, K.A., Zee, P.C.: Phase-locked loop for precisely timed acoustic stimulation during sleep. J. Neurosci Methods 259, 101–114 (2016). doi:10.1016/j.jneumeth.2015.11.007. Epub 2015 Nov 28. PubMed PMID: 26617321; PubMed Central PMCID: PMC5169172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Kostopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zotou, S., Kostopoulos, G.K., Antonakopoulos, T.A. (2017). Real-time Spindles Detection for Acoustic Neurofeedback. In: Frasson, C., Kostopoulos, G. (eds) Brain Function Assessment in Learning. BFAL 2017. Lecture Notes in Computer Science(), vol 10512. Springer, Cham. https://doi.org/10.1007/978-3-319-67615-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67615-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67614-2

  • Online ISBN: 978-3-319-67615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics