Skip to main content

Palliative Treatment of Head and Neck Cancer

  • Chapter
  • First Online:
Comprehensive Clinical Plasma Medicine

Abstract

Cold atmospheric pressure plasma (CAP) is clinically known for inactivating microbial pathogens and stimulation of tissue regeneration in chronic wounds. Several authors have reported the effectiveness against cancer in different cell lines and animal models as well. There are first reports of patients with real clinical benefit following application of CAP, mostly in terms of palliation, but some of them with not only visible change of the tumor surface but lasting partial tumor remission.

These patients with locally advanced squamous cell carcinoma of the oropharynx suffering from open infected ulcerations had been treated with a jet plasma source (kINPen® MED, neoplas tools GmbH, Greifswald, Germany) to inactivate the microbial pathogens causing odor and pain. The palliative therapy program included repeated cycles of three single applications (1 min/cm2 from a distance of 8 mm) within 1 week, each followed by an intermittence of 1 week. CAP treatment resulted in most of the patients in a significant reduction of odor and of pain medication requirements, an improvement in social function and a positive emotional affect. In two patients further observance revealed partial tumor remission for at least 9 month beyond palliation. Incisional biopsies at remission demonstrate a moderate amount of apoptotic tumor cells and a desmoplastic reaction of the connective tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process. 2007;27(2):163–76.

    Article  CAS  Google Scholar 

  2. vonWoedtke T, Metelmann HR, Weltmann KD. Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Phys. 2014;54(2):104–17.

    Article  CAS  Google Scholar 

  3. von Woedtke T, Reuter S, Masur K, Weltmanna KD. Plasmas for medicine. Phys Rep. 2013;530:291–320.

    Article  Google Scholar 

  4. Kim SJ, Chung TH. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep. 2016;3(6):20332.

    Article  Google Scholar 

  5. Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977–95.

    Article  PubMed  Google Scholar 

  6. Gay-Mimbrera J, García MC, Isla-Tejera B, Rodero-Serrano A, García-Nieto AV, Ruano J. Clinical and biological principles of cold atmospheric plasma application in skin cancer. Adv Ther. 2016;33(6):894–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Volotskova O, Hawley TS, Stepp MA, Keidar M. Targeting the cancer cell cycle by cold atmospheric plasma. Sci Rep. 2012;2:636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105(9):1295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirst AM, Frame FM, Arya M, Maitland NJ, O’Connell D. Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumour Biol. 2016;37(6):7021–31.

    Article  CAS  PubMed  Google Scholar 

  10. Bauer G. The antitumor effect of singlet oxygen. Anitcancer Res. 2016;36:5649–64.

    Article  CAS  Google Scholar 

  11. Lee HJ, Shon CH, Kim YS, Kim S, Kim GC, Kong MG. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma. New J Phys. 2009;11(11):115026.

    Article  Google Scholar 

  12. Kim GC, Kim GJ, Park SR, Jeon SM, Seo HJ, Iza F, Lee JK. Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer. J Phys D Appl Phys. 2009;42(3):032005.

    Article  Google Scholar 

  13. Daeschlein G, Scholz S, Lutze S, Arnold A, et al. Comparison between cold plasma, electro chemotherapy and combined therapy in a melanoma mouse model. Exp Dermatol. 2013;22:582–6.

    Article  PubMed  Google Scholar 

  14. Yajima I, Iida M, Kumasaka MY, Omata Y, Ohgami N, Chang J, Ichihara S, Hori M, Kato M. Non-equilibrium atmospheric pressure plasmas modulate cell cycle-related gene expressions in melanocytic tumors of RET-transgenic mice. Exp Dermatol. 2014;23(6):424–5.

    Article  CAS  PubMed  Google Scholar 

  15. Iida M, Yajima I, Ohgami N, Tamura H, Takeda K, Ichihara S, Hori M, Kato M. The effects of non-thermal atmospheric pressure plasma irradiation on expression levels of matrix metalloproteinases in benign melanocytic tumors in RETtransgenic mice. Eur J Dermatol. 2014;24(3):392–4.

    PubMed  Google Scholar 

  16. Sensenig R, Kalghatgi S, Cerchar E, Fridman G, Shereshevsky A, Torabi B, et al. Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng. 2011;39(2):674–87.

    Article  PubMed  Google Scholar 

  17. Zirnheld JL, Zucker SN, DiSanto TM, Berezney R, Etemadi K. Nonthermal plasma needle: development and targeting of melanoma cells. IEEE Trans Plasma Sci. 2010;38(4):948–52.

    Article  Google Scholar 

  18. Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Pape AL. ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer. 2012;130(9):2185–94.

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Kajiyama H, Kano H, Kikkawa F, Hori M. Plasma-activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule, AKT kinase. Plasma Med. 2011;1(3–4).

    Article  Google Scholar 

  20. Kaushik NK, Attri P, Kaushik N, Choi EH. A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells. Molecules. 2013;18(5):4917–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Kajiyama H, Kano H, Kikkawa F, Hori M. Plasma-activated medium selectively kills Glioblastoma brain tumor cells by down-regulating a survival Signaling molecule, AKT kinase. Plasma Med. 2011;1(3–4):265–77.

    Article  Google Scholar 

  22. Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Utsumi F, Kajiyama H, Kano H, Maruyama S, Kikkawa F, Hori M. Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2012;2(4):207–20.

    Article  Google Scholar 

  23. Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle JM. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym. 2010;7(3–4):264–73.

    Article  CAS  Google Scholar 

  24. Koritzer J, Boxhammer V, Schafer A, Shimizu T, Klampfl TG, Li YF, Welz C, Schwenk-Zieger S, Morfill GE, Zimmermann JL, Schlegel J. Restoration of sensitivity in chemo—resistant glioma cells by cold atmospheric plasma. PLoS One. 2013;8(5):e64498. https://doi.org/10.1371/journal.pone.0064498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaushik NK, Uhm H, Choi EH. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells. Appl Phys Lett. 2012;100(8):084102. https://doi.org/10.1063/1.3687172.

    Article  CAS  Google Scholar 

  26. Kaushik NK, Kim YH, Han YG, Choi EH. Effect of jet plasma on T98G human brain cancer cells (vol 13, pg 176, 2012). Curr Appl Phys. 2013;13(3):614–8. https://doi.org/10.1016/j.cap.2012.10.009.

    Article  Google Scholar 

  27. Kim SJ, Chung TH, Bae SH, Leem SH. Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet. Appl Phys Lett. 2010;97(2):023702.

    Article  Google Scholar 

  28. Ninomiya K, Ishijima T, Imamura M, Yamahara T, Enomoto H, Takahashi K, Tanaka Y, Uesugi Y, Shimizu N. Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non thermal atmospheric-pressure plasma jet. J Phys D Appl Phys. 2013;46(42):425401.

    Article  Google Scholar 

  29. Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One. 2013;8(9):e73741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahn HJ, Kim KI, Hoan NN, Kim CH, Moon E, Choi KS, Yang SS, Lee JS. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmosphericpressure air plasma. PLoS One. 2014;9(1):e86173.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim K, Jun Ahn H, Lee J-H, Kim J-H, Sik Yang S, Lee J-S. Cellular membrane collapse by atmospheric-pressure plasma jet. Appl Phys Lett. 2014;104(1):013701.

    Article  Google Scholar 

  32. Tan X, Zhao S, Lei Q, Lu X, He G, Ostrikov K. Single-cell-precision microplasma-induced cancer cell apoptosis. PLoS One. 2014;9(6):e101299.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leduc M, Guay D, Leask RL, Coulombe S. Cell permeabilization using a non-thermal plasma. New J Phys. 2009;11:115021. https://doi.org/10.1088/1367-2630/11/11/115021.

    Article  CAS  Google Scholar 

  34. Ahn HJ, Kim KI, Kim G, Moon E, Yang SS, Lee JS. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One. 2011;6(11):e28154. https://doi.org/10.1371/journal.pone.0028154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato T, Yokoyama M, Johkura K. A key inactivation factor of HeLa cell viability by a plasma flow. J Phys D Appl Phys. 2011;44(37):372001. https://doi.org/10.1088/0022-3727/44/37/372001.

    Article  CAS  Google Scholar 

  36. Huang J, Chen W, Li H, Wang PY, Yang SZ. Inactivation of He la cancer cells by an atmospheric pressure cold plasma jet. Acta Phys Sin-Ch Ed. 2013;62(6):065201. https://doi.org/10.7498/Aps.62.065201.

    Article  Google Scholar 

  37. Ja Kim S, Min Joh H, Chung TH. Production of intracellular reactive oxygen species and change of cellviability induced by atmospheric pressure plasma in normal and cancer cells. Appl Phys Lett. 2013;103(15):153705.

    Article  Google Scholar 

  38. Kim JY, Ballato J, Foy P, Hawkins T, Wei Y, Li J, Kim SO. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron. 2011;28(1):333–8.

    Article  CAS  PubMed  Google Scholar 

  39. Huang J, Chen W, Li H, Wang XQ, Lv GH, Khosa ML, Guo M, Feng KC, Wang PY, Yang SZ. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle. J Appl Phys. 2011;109(5):053305. https://doi.org/10.1063/1.3553873.

    Article  CAS  Google Scholar 

  40. Kim K, Choi JD, Hong YC, Kim G, Noh EJ, Lee JS, Yang SS. Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy. Appl Phys Lett. 2011;98(7):073701. https://doi.org/10.1063/1.3555434.

    Article  CAS  Google Scholar 

  41. Adachi T, Tanaka H, Nonomura S, Hara H, Kondo SI, Hori M. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial- nuclear network. Free Radic Biol Med. 2014;79C:28–44. https://doi.org/10.1016/j.freeradbiomed.2014.11.014.

    Article  CAS  Google Scholar 

  42. Panngom K, Baik KY, Nam MK, Han JH, Rhim H, Choi EH. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis. 2013;4:e642. https://doi.org/10.1038/cddis.2013.168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Torii K, Yamada S, Nakamura K, Tanaka H, Kajiyama H, Tanahashi K, Iwata N, Kanda M, Kobayashi D, Tanaka C, Fujii T, Nakayama G, Koike M, Sugimoto H, Nomoto S, Natsume A, Fujiwara M, Mizuno M, Hori M, Saya H, Kodera Y. Effectiveness of plasma treatment on gastric cancer cells. Gastric Cancer. 2014;18(3):635–43. https://doi.org/10.1007/s10120-014-0395-6.

    Article  CAS  PubMed  Google Scholar 

  44. Brullé L, Vandamme M, Ries D, Martel E, Robert E, Lerondel S, Trichet V, Richard S, Pouvesle JM, Le Pape A. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One. 2012;7(12):e52653. https://doi.org/10.1371/journal.pone.0052653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss FU, Evert M, Huebner NO, Guenther C, Heidecke CD, Kramer A, Bussiahn R, Weltmann KD, Pati O, Bender C, von Bernstorff W. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:473. https://doi.org/10.1186/1471-2407-12-473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Georgescu N, Lupu AR. Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE T Plasma Sci. 2010;38(8):1949–55.

    Article  Google Scholar 

  47. Ishaq M, Evans MDM, Ostrikov K. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2–ASK1 apoptosis pathways and oxidative stress is mitigated by Srx–Nrf2 anti-oxidant system. Biochim Biophys Acta. 2014;1843(12):2827–37.

    Article  CAS  PubMed  Google Scholar 

  48. Plewa J-M, Yousfi M, Frongia C, Eichwald O, Ducommun B, Merbahi N, Lobjois V. Low-temperature plasmainduced antiproliferative effects on multi-cellular tumor spheroids. New J Phys. 2014;16(4):043027.

    Article  Google Scholar 

  49. Lupu AR, Georgescu N, Calugaru A, Cremer L, Szegli G, Kerek F. The effects of cold atmospheric plasma jets on B16 and COLO320 tumoral cells. Roum Arch Microbiol Immunol. 2009;68(3):136–44.

    CAS  PubMed  Google Scholar 

  50. Kim CH, Kwon S, Bahn JH, Lee K, Jun SI, Rack PD, Baek SJ. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl Phys Lett. 2010;96(24):243701. https://doi.org/10.1063/1.3449575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hirst AM, Frame FM, Maitland NJ, O'Connell D. Low temperature plasma: a novel focal therapy for localized prostate cancer? Biomed Res Int. 2014;2014:878319. https://doi.org/10.1155/2014/878319.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barekzi N, Laroussi M. Dose-dependent killing of leukemia cells by low-temperature plasma. J Phys D Appl Phys. 2012;45(42):422002.

    Article  Google Scholar 

  53. Thiyagarajan M, Waldbeser L, Whitmill A. THP-1 leukemia cancer treatment using a portable plasma device. Stud Health Technol Inform. 2011;173:515–7.

    Google Scholar 

  54. Thiyagarajan M, Anderson H, Gonzales XF. Induction of apoptosis in human myeloid leukemia cells by remote exposure of resistive barrier cold plasma. Biotechnol Bioeng. 2014;111(3):565–74.

    Article  CAS  PubMed  Google Scholar 

  55. Thiyagarajan M, Sarani A, Gonzales X. Characterization of portable resistive barrier plasma jet and its direct and indirect treatment for antibiotic resistant bacteria and THP-1 leukemia cancer cells. IEEE T Plasma Sci. 2012;40(12):3533–45.

    Article  CAS  Google Scholar 

  56. Zhang X, Li M, Zhou R, Feng K, Yang S. Ablation of liver cancer cells in vitro by a plasma needle. Appl Phys Lett. 2008;93(2):021502.

    Article  Google Scholar 

  57. Zhao S, Xiong Z, Mao X, Meng D, Lei Q, Li Y, Deng P, Chen M, Tu M, Lu X, Yang G, He G. Atmospheric pressure room temperature plasma jets facilitate oxidative and nitrative stress and lead to endoplasmic reticulum stress dependent apoptosis in HepG2 cells. PLoS One. 2013;8(8):e73665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gweon B, Kim M, Kim DB, Kim D, Kim H, Jung H, Shin JH, Choe W. Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Appl Phys Lett. 2011;99(6):063701. https://doi.org/10.1063/1.3622631.

    Article  CAS  Google Scholar 

  59. Kaushik NK, Kaushik N, Park D, Choi EH. Altered antioxidant system stimulates dielectric barrier discharge plasma- induced cell death for solid tumor cell treatment. PLoS One. 2014;9(7):e103349. https://doi.org/10.1371/journal.pone.0103349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, Lee JS, Moon E, Lee K, Kim CH. Non-thermal atmospheric pressure plasma inhibits thyroid papillary cancer cell invasion via cytoskeletal modulation, altered MMP-2/-9/ uPA activity. PLoS One. 2014;9(3):e92198. https://doi.org/10.1371/journal.pone.0092198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, Ravi R, Sidransky D, Keidar M, Trink B. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med. 2014;34(4):941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kang SU, Cho JH, Chang JW, Shin YS, Kim KI, Park JK, Yang SS, Lee JS, Moon E, Lee K, Kim CH. Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinasedependent mitochondrial reactive oxygen species. Cell Death Dis. 2014;5:e1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hasse S, Tran TD, Hahn O, Weltmann KD, Metelmann HR, Masur K. Plasma application in human skin—molecular analyses in situ. Exp Dermatol. 2014;23:e51.

    Google Scholar 

  64. Han X, Klas M, Liu YY, Stack MS, Ptasinska S. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets. Appl Phys Lett. 2013;102(23):233703. https://doi.org/10.1063/1.4809830.

    Article  CAS  Google Scholar 

  65. Chang JW, Kang SU, Shin YS, Kim KI, Seo SJ, Yang SS, Lee JS, Moon E, Baek SJ, Lee K, Kim CH. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage- triggering sub-G(1) arrest via the ATM/p53 pathway. Arch Biochem Biophys. 2014a;545:133–40.

    Article  CAS  PubMed  Google Scholar 

  66. Metelmann H-R, Nedrelow DS, Seebauer C, Schuster M, von Woedtke T, Weltmann K-D, Kindler S, Metelmann PH, Finkelstein SE, Von Hoff DD, Podmelle F. Head and neck cancer treatment and physical plasma. Clin Plasma Med. 2015;3(1):17–23.

    Article  Google Scholar 

  67. Schuster M, Seebauer C, Rutkowski R, Hauschild A, Podmelle F, Metelmann C, Metelmann B, von Woedtke T, Hasse S, Weltmann KD, Metelmann HR. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. J Craniomaxillofac Surg. 2016;44(9):1445–52.

    Article  PubMed  Google Scholar 

  68. Metelmann HR, Seebauer C, Miller V, Friedman A, Bauer G, Graves DB, Pouvesle JM, Rutkowski R, Schuster M, Bekeschus S, Wende K, Masur K, Hasse S, Gerling T, Hori M, Tanaka H, Choi EH, Weltmann KD, Metelmann PH, Von Hoff DD, von Woedtke T. Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin Plasma Med. 2017. https://doi.org/10.1016/j.cpme.2017.09.001.

  69. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.

    CAS  PubMed  Google Scholar 

  70. Isbary G, Zimmermann JL, Shimizu T, Li YF, Morfill GE, Thomas HM, et al. Non-thermal plasma – more than five years of clinical experience. J Clin Plasma Med. 2013;1:19–23.

    Article  Google Scholar 

  71. Miller V, Lin A, Fridman A. Why target immune cells for plasma treatment of cancer. Plasma Chem Plasma Process. 2016;36(1):259–68.

    Article  CAS  Google Scholar 

  72. Ishaq M, Han ZJ, Kumar S, Evans MD, Ostrikov KK. Atmospheric-pressure plasma-and TRAIL-induced apoptosis in TRAIL-resistant colorectal cancer cells. Plasma Process Polym. 2015;12(6):574–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Seebauer M.D., D.D.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seebauer, C., Metelmann, HR., Witzke, K., Pouvesle, JM. (2018). Palliative Treatment of Head and Neck Cancer. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Comprehensive Clinical Plasma Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-67627-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67627-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67626-5

  • Online ISBN: 978-3-319-67627-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics