Skip to main content

Algal Biorefineries for Biofuels and Other Value-Added Products

  • Chapter
  • First Online:
Biorefining of Biomass to Biofuels

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 4))

Abstract

Biorefining refers to sustainable biomass transformation through different conversion routes and equipment in order to obtain energy, biofuels, and high-value products. A variety of sustainable but low-cost biomass-based industries can be framed using biorefinery concept. Among various feedstocks, algae are also proving its firm candidature for biorefinery processes. This chapter describes the general characteristics of microalgae and their potential to be used as a raw material in the biorefinery process. It also focuses on the products obtained from microalgae, mainly biofuels and different pathways employed in biomass fractionation for other valuable products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalde J, Cid A, Reiriz S, Torres E, Herrero C (1995) Response of the marine microalga Dunaliella tertiolecta (Chlorophyceae) to copper toxicity in short time experiments. Bull of Environ Contam Toxicol 54(2)

    Google Scholar 

  • Abirami S, Murugesan S, Sivaswamy SN (2016) Effect of various pretreatment methods prior to extraction of omega 3 fatty acids from Nannochloropsis gaditana. Int J App Res 2(10):81–85

    Google Scholar 

  • Afify AMM, Shanab SM, Shalaby EA (2010) Enhancement of biodiesel production from different species of algae. Grasas Aceites 61:416–422

    Article  Google Scholar 

  • Agarwal M, Tardio J, Venkata Mohan S (2015) Biohydrogen production from kitchen based vegetable waste; effect of pyrolysis temperature and time on catalyzed and non-catalyzed operation. Bioresour Technol 130:502–509

    Article  Google Scholar 

  • Babich IV, Van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenerg 35:3199–3207

    Article  Google Scholar 

  • Béchet Q, Shilton A, Guievsse B (2016) Maximizing productivity and reducing environmental impacts of full-scale algal production through optimization of open pond depth and hydraulic retention time. Environ Sci Technol 50(7):4102–4110

    Article  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, London, p 566

    Google Scholar 

  • Bell JG, McEvoy J, Tocher DR, Sargent JR (2000) Depletion of α-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. J Nutri 130(7):1800–1808

    Google Scholar 

  • Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species: Dunaliella. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 273–280

    Google Scholar 

  • Bhosale RA, Rajabhoj M, Chaugule B (2010) Dunaliella salina Teod. as a prominent source of eicosapentaenoic acid. Int. J Algae 12(2):185–189

    Article  Google Scholar 

  • Bian Q, Qin T, Ren Z, Wu D, Shang F (2012) Lutein or Zeaxanthin supplementation suppresses inflammatory responses in retinal pigment epithelial cells and macrophages. Adv Exp Med Biol 723:43–50

    Article  Google Scholar 

  • Biller P, Friedman C, Ross AB (2013) Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bioproducts. Bioresour Technol 136:188–195

    Article  Google Scholar 

  • Botella-Pavía P, Rodríguez-Concepción M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126(3):369–381

    Article  Google Scholar 

  • Brennan A, Jimenez EM, Alburquerque JA, Knapp CW, Switzer C (2014) Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ Pollut 193:79–87

    Article  Google Scholar 

  • Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energ Fuels 24:3639–3646

    Article  Google Scholar 

  • Brudy Technology (2013) New Omega-3 Enzyme. Scientific Update. Nuevos ácidos grasos OMEGA-3 Enzimáticos. Actualización Científica

    Google Scholar 

  • Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energ Convers Manage 46:615–631

    Article  Google Scholar 

  • Campenni’ L, Nobre BP, Santos CA, Oliveira AC, Aires-Barros AR et al (2013) Carotenoids and lipids production of autotrophic microalga Chlorella protothecoides under nutritional, salinity and luminosity stress conditions. Appl Microbiol Biotechnol 97:1383–1393

    Article  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Article  Google Scholar 

  • Cao H, Zhang Z, Wu X, Miao X (2013) Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification. BioMed Res 2013. doi:10.1155/2013/930686

  • Carvalho LR, Costa-Neves A, Conserva GAA et al (2013) Biologically active compounds from cyano bacteria extracts: in vivo and in vitro aspects. Braz J Pharmacog 23(3):471–480

    Article  Google Scholar 

  • Chakinala AG, Brilman DWF, Van Swaaij WPM, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49:1113–1122

    Article  Google Scholar 

  • Chamorro G (1980) Toxicological study of Spirulina Algae Pilot plant producing protein (Spirulina Sosa Texcoco SA). Etude toxicologique de l’algue Spirulina plante pilote productrice de protéines (Spirulina de Sosa Texcoco S.A.) UF/MEX/78/048, UNIDO/10.387

    Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  Google Scholar 

  • Chen CR, Hong SE, Wang YC, Hsu SL, Hsiang D, Chang CM (2012) Preparation of highly pure Zeaxanthin particles from sea water-cultivated microalgae using supercritical anti-solventrecrystallization. Bioresour Technol 104:828–831

    Article  Google Scholar 

  • Chen F, Li HB, Wong RN, Ji B, Jiang Y (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-currentchromatography. J Chromatogr 1064:183–186

    Article  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 771:41–47

    Article  Google Scholar 

  • Cheng H-H, Whang L-M, Chan K-U, Wu S-H, Liu C-P et al (2015) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385

    Article  Google Scholar 

  • Cheng J, Su H, Zhou J, Song W, Cen K (2011) Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photofermentation. Int J Hydrogen Energ 36:2093e101

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  Google Scholar 

  • Ciriminna R, Fidalgo A, Meneguzzo F, Ilharco LM, Pagliaro M (2016) Lycopene: emerging production methods and applications of a valued carotenoid. ACS Sust Chem Eng 4(3):643–650

    Article  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy RA et al (2011) Lifecycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  Google Scholar 

  • Costa E, Silva J, Mendonça SH, Abreu MH, Domingues MR (2016) Lipidomic approaches towards decipheringglycolipids from microalgae as a reservoir of bioactive lipids. Mar Drugs 14:101

    Article  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    Article  Google Scholar 

  • Crupi P, Toci AT, Mangini S, Wrubl F, Rodolfi L, Tredici MR et al (2013) Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high-performance liquid chromatography coupled with diode-array detector multistage mass spectrometry coupled with positive electrospray ionization. Rapid Commun Mass Spectrom 27(9):1027–1035

    Article  Google Scholar 

  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209

    Article  Google Scholar 

  • Custódio L, Justo T, Silvestre L et al (2012) Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem 131(1):134–140

    Article  Google Scholar 

  • Del Campo JA, Moreo J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76(1):51–59

    Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ Conv Manage 49:2016–2106

    Article  Google Scholar 

  • Deniaud E, Fleurence J, Lahaye M (2003) Preparation and chemical characterization of cell wall fractions enriched in structural proteins from Palmaria palmata (Rhodophyta). Bot Mar 46:366–377

    Google Scholar 

  • Derner RB, Ohse S, Villela M, Matos de Carvalho S, Fett R (2006) Microalgae, products and applications. Microalgas, produtos e aplicações. Scielo: Revista Ciência Rural 36:1959–1967

    Google Scholar 

  • Dufoss’e L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–321

    Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energ 88:3454–3463

    Article  Google Scholar 

  • Elliott D, Biller P, Ross A, Schmidt A, Jones S (2015) Hydrothermal liquefaction of biomass: developments from batchto continuous process. Bioresour Technol 178:147–156

    Article  Google Scholar 

  • Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV et al (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2:445–454

    Article  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    Article  Google Scholar 

  • EN 14214 (2008) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods

    Google Scholar 

  • Encarnação APG (2008) Geração de Biodiesel pelos Processos de Transesterificação e Hidroesterificação, Uma Avaliação Econômica, MSc. Thesis, Rio de Janeiro, Brazil

    Google Scholar 

  • Esteban R, Balaguer L, Manrique E, Rubio de Casas R, Ochoa R, Fleck I et al (2009) Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations. Photosynth Res 101:77–88

    Article  Google Scholar 

  • Ferreira AF, Ortigueira J, Alves L, Gouveia L, Moura P et al (2013) Energy requirement and CO2 emissions of biohydrogen production from microalgal biomass. Biomass Bioenerg 49:249–259

    Article  Google Scholar 

  • Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6(2):466–488

    Google Scholar 

  • Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A (2013) Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT-Food Sci Technol 50:312–319

    Article  Google Scholar 

  • Franceschin G, Zamboni A, Bezzo F, Bertucco A (2008) Ethanol from corn: a technical and economical assessment based on different scenarios. Chem Eng Res Des 86:488–498

    Article  Google Scholar 

  • Fujimura S, Ueda K, Nomura Y, Yanagi Y (2016) Preliminary analysis of the relationship between serum lutein ad Zeaxanthin levels and macular pigment optical density. Clin Ophthalmol 10:2149–2155

    Article  Google Scholar 

  • Gagez AL, Thiery V, Pasquet V, Cadoret JP, Picot L (2012) Epoxycarotenoids and cancer. Rev Curr Bioact Compd 8:109–141

    Article  Google Scholar 

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253

    Article  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  Google Scholar 

  • Goh CS, Lee KT (2011) Second-generation biofuel (SGB) in Southeast Asia via lignocellulosic biorefinery: penny-foolish but pound-wise. Renew Sust Energ Rev 15:2714–2718

    Article  Google Scholar 

  • Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097

    Article  Google Scholar 

  • González LE, Díaz GC, Aranda DAG, Cruz YR, Fortes MM (2015) Biodiesel production based in microalgae: a biorefinery approach. Nat Sci 7:359–369

    Google Scholar 

  • Gouveia L (2014) From tiny microalgae to huge biorefineries. Oceanography 2:120. doi:10.4172/2332-2632.1000120

    Google Scholar 

  • Grima EM, Belarbi E, Acien Fernandez F, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Grosso C, Valentão P, Ferreres F, Andrade PB (2015) Alternative and efficient extraction methods for marine-derived compounds. Mar Drugs 13:3182–3230

    Article  Google Scholar 

  • Guan Q, Savage PE, Wei C (2012) Gasification of alga Nannochloropsis sp. in supercritical water. J Supercritical Fluids 61:139–145

    Article  Google Scholar 

  • Guedes AC, Gião MS, Matias AA, Nunes AVM, Manuela ME, Duarte CMM et al (2013) Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing. J Food Eng 116:478–482

    Article  Google Scholar 

  • Guihéneuf F, Mimouni V, Ulmann L, Tremblin G (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Biol Ecol 369(2):136–143

    Article  Google Scholar 

  • Halim R, Rupasinghe TWT, Tull DL, Webley PA (2013) Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresour Technol 140:53–63

    Article  Google Scholar 

  • Hallenbeck PC and Benemann JR (2010) Biohydrogen—the microbiological production of hydrogen fuel in EOLSS encyclopedia. In: Doelle HW, Rokem S (eds) Biotechnology, vol 7. ISBN: 978–1-84826-711-4

    Google Scholar 

  • Hamilton ML, Powers S, Napier JA, Sayanova O (2016) Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs 14:53

    Article  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309

    Article  Google Scholar 

  • Harun R, Manjinder S, Gareth MF, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energ Rev 14(3):1037–1047

    Google Scholar 

  • Hidalgo P, Toro C, Ciudad G, Navia R (2013) Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol 12:179–199

    Article  Google Scholar 

  • Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ et al (2014) Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol 152:275–282

    Article  Google Scholar 

  • Horn SJ (2000) Bioenergy from brown seaweeds, vol. Ph.D., Norwegian University of Science and Technology, Norway, p 82

    Google Scholar 

  • Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from Microalgae: a review on the process engineering aspects. Int J Chem Eng 1–11

    Google Scholar 

  • Hu CY, Chao PY, Hu SP, Yang CM (2013) The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Nutr Sci 41(4):1–8

    Google Scholar 

  • Hu Z-C, Zheng Y-G, Wang Z, Shen Y-C (2006) pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enz Microb Technol 39(4):586–590

    Article  Google Scholar 

  • Islamian PJ, Mehrali H (2015) Lycopene as a carotenoid provides radio protectant and antioxidant effects by quenching radiation-induced free radical singlet oxygen: an overview. Cell J 16:386–391

    Google Scholar 

  • Jazrawi C, Biller P, Ross A, Montoya A, Maschmeyer T, Haynes B (2013) Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Res 2:268–277

    Article  Google Scholar 

  • Jeffrey SW (1968) Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochimica et Biophysica Actavol 162(2):271–285

    Article  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright RW (eds) (1997) Phytoplankton Pigments in oceanography: guidelines to modern methods. UNESCO, Paris, France

    Google Scholar 

  • Kamiński W, Tomczak E, Górak A (2011) Biobutanol—production and purification methods. Ecological Chem Eng 18:31–37

    Google Scholar 

  • Kawee-Ai A, Kim SM (2014) Application of microalgal fucoxanthin for the reduction of colon cancer risk: inhibitory activity of fucoxanthin against beta-glucuronidase and DLD-1 cancer cells. Nat Prod Commun 9(7):921–924

    Google Scholar 

  • Kelkel M, Schumacher M, Dicato M, Diederich MF (2011) Antioxidant and anti-proliferative properties of lycopene. Free Radical Res 45:925–940

    Article  Google Scholar 

  • Kim AL, Lee OK, Seong DH, Lee GG, Jung YT et al (2013a) Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta. Bioresour Technol 132:197–201

    Article  Google Scholar 

  • Kim S-H, Liu K-H, Lee S-Y, Hong S-J, Cho B-K, Lee H et al (2013b) Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS ONE 8:e72415

    Article  Google Scholar 

  • Kim Y, Seo JH, Kim HJ (2011) β-Carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells. Nutr Sci Vitaminol (Tokyo) 57(3):216–223

    Article  Google Scholar 

  • Kovač DJ, Simeunović JB, Babić OB, Mišan AČ, Milovanović IL (2013) Algae in food and feed. Food Feed Res 40:21–31

    Google Scholar 

  • Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013a) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  Google Scholar 

  • Kumar SR, Hosokawa M, Miyashita K (2013b) Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs 11(12):5130–5147

    Article  Google Scholar 

  • Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66:64–72

    Article  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  Google Scholar 

  • Lamers PP, van de Laak CC, Kaasenbrood PS, Lorier J, Janssen M, de Vos RC et al (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioenerg 106(4):638–648

    Article  Google Scholar 

  • Li Y, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  Google Scholar 

  • López M, Arce L, Garrido J, Ríos A, Valcárcel M (2004) Selective extraction of astaxanthin from Crustaceans by use of supercritical carbon dioxide. Talanta 64(3):726–731

    Article  Google Scholar 

  • Lorenzo NF, Fuente E, Suarez- Ruiz RR, Gil B (2014) Pyrolysis characteristics of a macroalgae solid waste generated by the industrial production of Agar–Agar. J. Anal Appl Pyrolysis 105:209–216

    Article  Google Scholar 

  • Macías-Sánchez MD, Mantell C, Rodríguez M, de la Ossa EM, Lubián LM, Montero O (2009) Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77(3):948–952

    Article  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332(2):392–397

    Article  Google Scholar 

  • Manikan V, Nazir MYM, Kalil MS, Isa MHM, Kader AJA, Yusoff WMW et al (2015) A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters. Algal Res 9:40–47

    Article  Google Scholar 

  • Manzan ACCM, Toniolo FS, Bredow E, Povh NP (2003) Extraction of essential oil and pigments from Curcuma longa (L) by steam distillation and extraction with volatile Solvents. J Agric Food Chem 51:6802–6807

    Article  Google Scholar 

  • Marques AE, Barbosa TA, Jotta J, Tamagnini P, Gouveia L (2011) Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: light, Nickel and CO2. Biomass Bioenerg 35:4426–4434

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev 14:217–232

    Article  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  Google Scholar 

  • Mezzomo N, Ferreira SRS (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem, Article ID 3164312, 16 p. http://dx.doi.org/10.1155/2016/3164312

  • Mezzomo N, Sandra R, Ferreira S, (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem 2016:1–16

    Google Scholar 

  • Mezzomo N, Tenfen L, Farias MS, Friedrich MT, Pedrosa RC, Ferreira SRS (2015) Evidence of anti-obesity and mixed hypolipidemic effects of extracts from pink shrimp (Penaeus brasiliensis and Penaeus paulensis) processing residue. J Supercrit Fluids 96:252–261

    Article  Google Scholar 

  • Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969

    Article  Google Scholar 

  • Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) Review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546

    Article  Google Scholar 

  • Mitra D, Van Leeuwen J, Lamsal BP (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res 1(1):40–48

    Google Scholar 

  • Mohan SV, Prathima Devi M, Mohanakrishna G, Amarnath N, Lenin Babu M, Sarma PN (2011) Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment. Biores Technol 102:1109–1117

    Article  Google Scholar 

  • Mortimer ND, Elsayed MA, Horne RE (2004). Energy and greenhouse gas emissions for bioethanol production from wheat grain and sugar beet. Final report. UK: British Sugar Plc. Available at. http://www.northenergy.co.uk/c/pdf/Resources_Research_Unit-Work_for_Bri-tish_Sugar-2_1.pdf

  • Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242

    Article  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC et al (2010) Technological trends, global market, and challenges of bioethanol production. Biotechnol Adv 28:817–830

    Article  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  Google Scholar 

  • Nautiyal OH (2016) Food processing by supercritical carbon dioxide-review. EC Chemistry 2(1):111–135

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust Sci 37(1):52–68

    Google Scholar 

  • Nobre BP, Villalobos F, Barragán BE, Oliveira AC, Batista AP et al (2013) A biorefinery from Nannochloropsis sp. microalga—Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136

    Article  Google Scholar 

  • Okuyama Y, Ozasa K, Oki K, Nishino H, Fujimoto S, Watanabe Y (2014) Inverse associations between serum concentrations of Zeaxanthin and other carotenoids and colorectal neoplasm in Japanese. Int J Clin Oncol 19:87–97

    Article  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  Google Scholar 

  • Olivares-Carrillo P, Quesada-Medina J (2011) Synthesis of biodiesel from soybean oil using supercritical methanol in a one-step catalyst-free process in batch reactor. J Supercritical Fluids 58:378–384

    Article  Google Scholar 

  • Ondrey G (2010) This new process makes biogasoline from carbohydrates. Chem Eng. Available at http://www.chemengonline.com/this-new-process-makes-biogasoline-from-carbohydrates/?printmode=1

  • Ota A, Kawai S, Oda H, Iohara K, Murata K (2013) Production of ethanol from mannitol by the yeast strain Saccharomyces paradoxus NBRC 0259. J Biosci Bioeng 116:327–332

    Article  Google Scholar 

  • Pacheco R, Ferreira AF, Pinto T, Nobre BP, Loureiro D, Moura P et al (2015) Life Cycle Assessment of a Spirogyra sp. biorefinery for the production of pigments, hydrogen and leftovers energy valorisation. Energ Convers Manage 89:789–797

    Article  Google Scholar 

  • Parajó JC, Dominguez H, Moure A, Diaz-Reinoso B (2008) Obtaining antioxidants by supercritical fluid extraction applied. In: Meireles MAA (ed) extracting bioactive compounds for food products, theory and applications. CRC Press Taylor & Francis Group, LLC, USA, pp 288–315

    Google Scholar 

  • Pasquet V, Morisset P, Ihammouine S, Chepied A, Aumailley L, Berard J-B et al (2011a) Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar Drugs 9:819–831

    Google Scholar 

  • Pasquet V, Chérouvrier JR, Farhat F, Thiéry V, Piot JM, Bérard JB et al (2011b) Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochem 46(1):59–67

    Google Scholar 

  • Peng J, Yuan JP, Wu CF, Wang JH (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9(10):1806–1828

    Article  Google Scholar 

  • Perretti G, Bravi E, Montanari L, Fantozzi P (2003) Extraction of PUFAs rich oils from algae with supercritical carbon dioxide. In Proceedings 6th International Symposium on Supercritical Fluids, Versailles (F) 29–30 Apr 2003, pp 29–34

    Google Scholar 

  • Pieber S, Schober S, Mittelbach M (2012) Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. Biomass Bioenrg 47:474–482

    Article  Google Scholar 

  • Plaza M, Santoyo S, Jaime L et al (2010) Screening for bioactive compounds from algae. J Pharma Biomed Analysis 51(2):450–455

    Article  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32:559–578

    Article  Google Scholar 

  • Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2010) The production of butanol from Jamaica bay macro algae. In: Special issue: papers from the 2010 International Congress on Energy (ICE), presented at the 2010 AIChE Annual Meeting

    Google Scholar 

  • Powel EE, Hill GA (2009) Economic assessment of an integrated bioethanol biodiesel-microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Design 87:1340–1348

    Article  Google Scholar 

  • Ramos-Surez JL, Arroyo NC, Gonzlez-Fernandes C (2015) The role of anaerobic digestion in algal biorefineries: clean energy production, organic waste treatment and nutrient loop closure. Algae and environmental sustainability, vol 7. pp 53–76

    Google Scholar 

  • Ravindran B, Gupta SK, Cho W-M, Kim JK, Lee SR, Jeong K-H et al (2016) Microalgae potential and multiple roles—current progress and future prospects-an overview. Sustainability 8:1215

    Article  Google Scholar 

  • Ree RV, Annevelink B (2007) Status Report Biorefinery. Agrotechnology and Food Sciences Group, Wage-nongen

    Google Scholar 

  • Rosenkranz A, Krasna AJ (1984) Stimulation of hydrogen photo production in algae by removal of oxygen by reagents that combine reversibly with oxygen. Biotech Bioeng 26:1334–1342

    Article  Google Scholar 

  • Ruiz J, Olivieri G, Vree J, Bosma R, Willems P, Reith JH et al (2016) Towards industrial products from microalgae. Energy Eviron Sci 9:3036–3043

    Article  Google Scholar 

  • Sang M, Wang M, Liu J, Zhang C, Li A (2012) Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus. J Ocean Univ China (English Edition) 1–6

    Google Scholar 

  • Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16:307–329

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schroeder WA, Johnson EA (1995) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270(31):18374–18379

    Article  Google Scholar 

  • Scott SD, Armenta RE, Berryman KT, Norman AW (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol 48(3):267–272

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–12340

    Article  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  Google Scholar 

  • Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ (2013) Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. Bioresour Technol 143:308–314

    Article  Google Scholar 

  • Skulberg OM (2004) Bioactive chemicals in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 485–512

    Google Scholar 

  • Soontornchaiboon W, Joo SS, Kim SM (2012) Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol Pharm Bull 35:1137–1144

    Article  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C et al (2010) Future prospects of microalgal biofuel production systems. Trends in Plant Sci 15:554–564

    Article  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2009) Combination of dark and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrogen Energy 34:8846e53

    Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2010) Hydrogen production from water hyacinth through dark- and photo-fermentation. Int J Hydrogen Energy 35:8929–8937

    Article  Google Scholar 

  • Su Y, Wang J, Shi M, Niu X, Yu X, Gao L et al (2014) Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresour Technol 170:522–529

    Article  Google Scholar 

  • Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V (2015) Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs 13:6152–6209

    Article  Google Scholar 

  • Tamburic B, Zemichael FW, Maitland GC, Hellgardt K (2011) Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int J Hydrogen Energy 36:7872–7876

    Article  Google Scholar 

  • Topare N, Rout SJ, Renge VC, Khedkar SV, Chavan YP, Bhagat SL (2011) Extraction of oil from algae by solvent extraction and oil expeller method. Int J Chem 9:1746–1750

    Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584

    Article  Google Scholar 

  • Wagenen VJ, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5(3):731–740

    Article  Google Scholar 

  • Wathne E, Bjerkeng B, Storebakken T, Vassvik V, Odland AB (1998) Pigmentation of Atlantic Salmon (Salmo salar) fed astaxanthin in all meals or in alternating meals. Aquacultlure 159:217–231

    Article  Google Scholar 

  • Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44(4):275–295

    Article  Google Scholar 

  • Winwood RJ (2013) Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. Oilseeds fats Crops Lipids 20(6):D604

    Google Scholar 

  • Wirth R, Lakatos G, Maróti G, Bagi Z, Minárovics J, Nagy K et al (2015) Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process. Biotechnol Biofuels 8:59

    Article  Google Scholar 

  • Wright SW, Shearer JD (1984) Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. J Chromatography 294:281–295

    Article  Google Scholar 

  • Yago T, Arakawa H, Morinaga T, Yoshie-Stark Y, Yoshioka M (2011) Effect of wavelength of intermittent light on the growth and fatty acid profile of the haptophyte Isochrysis galbana. Mank-Mar Environ Interact, Glob Chang, pp 43–45

    Google Scholar 

  • Yakoob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (Thessalon) 21:6

    Article  Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  Google Scholar 

  • Yu X, Chen L, Zhang W (2015) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 6:56

    Google Scholar 

  • Zean Consultores (2013) Thin film evaporators. application: distillation of glycerin. Evaporadores de películas finas. Aplicación: Destilación de glicerina. www.interempresas.net

Download references

Acknowledgements

One of the authors (Madhulika Shukla) acknowledges the fellowship provided through SSS-NIBE Bioenergy Promotion Fellowship to carry out the research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, M., Kumar, S. (2018). Algal Biorefineries for Biofuels and Other Value-Added Products. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics