Skip to main content

Fastest Path for a Single Departure-Time

  • Chapter
  • First Online:
Spatio-Temporal Graph Data Analytics

Abstract

This chapter provides a gentle introduction to fastest path finding algorithms in spatio-temporal graphs. We first discuss a simple adaptation of the Dijkstra’s algorithm for finding the fastest path. Following this we cover more advanced concepts of A* and bi-directional search on temporal digraphs. The chapter also discusses adaptations of few of the centrality metrics for temporal digraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anthonisse, J.M.: The rush in a directed graph. CWI Technical Report Stichting Mathematisch Centrum. Mathematische Besliskunde-BN 9/71, Stichting Mathematisch Centrum (1971)

    Google Scholar 

  2. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Google Scholar 

  3. Chabini, I., Lan, S.: Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks. IEEE Trans. Intell. Transp. Syst. 3(1), 60–74 (2002)

    Google Scholar 

  4. Demiryurek, U., Banaei-Kashani, F., Shahabi, C., Ranganathan, A.: Online computation of fastest path in time-dependent spatial networks. In: Advances in Spatial and Temporal Databases. Lecture Notes in Computer Science, vol. 6849, pp. 92–111. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  5. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)

    Google Scholar 

  6. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Google Scholar 

  7. George, B., Kim, S.: Spatio-Temporal Networks. Springer, New York (2003). doi:10.1007/978-1-4614-4918-8

    Google Scholar 

  8. George, B., Shekhar, S., Kim, S.: Spatio-temporal network databases and routing algorithms. Tech. Rep. 08-039, University of Minnesota - Computer Science and Engineering (2008)

    Google Scholar 

  9. Gunturi, V.M.V., Shekhar, S., Joseph, K., Carley, K.M.: Scalable computational techniques for centrality metrics on temporally detailed social network. Mach. Learn. (2016). doi:10.1007/s10994-016-5583-7

    Google Scholar 

  10. Habiba, Tantipathananandh, C., Berger-Wolf, T.Y.: Betweenness centrality measure in dynamic networks. Tech. Rep. 2007-19, Center for Discrete Mathematics and Theoretical Computer Science (2007)

    Google Scholar 

  11. Jing, N., Huang, Y.W., Rundensteiner, E.A.: Hierarchical optimization of optimal path finding for transportation applications. In: Proceedings of the Fifth International Conference on Information and Knowledge Management (CIKM), pp. 261–268. ACM, Rockville (1996)

    Google Scholar 

  12. Karagiannis, T., Vojnovic, M.: Email information flow in large-scale enterprises. Technical Report Microsoft Research (2008)

    Google Scholar 

  13. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev. E 85(2), 026107 (2012)

    Article  Google Scholar 

  14. Kim, H., Tang, J., Anderson, R., Mascolo, C.: Centrality prediction in dynamic human contact networks. Comput. Netw. 56(3), 983–996 (2012)

    Article  Google Scholar 

  15. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional a* search for time-dependent fast paths. In: Experimental Algorithms, pp. 334–346. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  16. Nannicini, G., Delling, D., Schultes, D., Liberti, L.: Bidirectional a* search on time-dependent road networks. Networks 59(2), 240–251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shekhar, S., Liu, D.: Ccam: a connectivity-clustered access method for networks and network computations. IEEE Trans. Knowl. Data Eng. 9(1), 102–119 (1997)

    Article  Google Scholar 

  19. Tang, J., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.: Analysing information flows and key mediators through temporal centrality metrics. In: Proceedings of the 3rd Workshop on Social Network Systems, SNS ’10, pp. 3:1–3:6 (2010)

    Google Scholar 

  20. Tyler, J.R., Tang, J.C.: When can i expect an email response? A study of rhythms in email usage. In: Proceedings of the Eighth Conference on European Conference on Computer Supported Cooperative Work, pp. 239–258 (2003)

    Google Scholar 

  21. Wu, F., Huberman, B.A.: Novelty and collective attention. Proc. Natl. Acad. Sci. USA 104(45), 17599–17601 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunturi, V.M.V., Shekhar, S. (2017). Fastest Path for a Single Departure-Time. In: Spatio-Temporal Graph Data Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-67771-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67771-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67770-5

  • Online ISBN: 978-3-319-67771-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics