Skip to main content

Debating Relativistic Cosmology, 1917–1924

(Mathematical Intelligencer 38(2)(2016): 46–58; 38(3)(2016): 52–60)

  • Chapter
  • First Online:
A Richer Picture of Mathematics
  • 2564 Accesses

Abstract

Physical astronomy as we know it today matured during the latter half of the twentieth century. It was preceded by a period Jean Eisenstaedt has dubbed the “low water mark” in general relativity (GR), covering roughly the period 1925 to 1955 (Eisenstaedt 1988b). Starting in the 1960s, however, a series of startling developments helped pave the way for what has since been called the “renaissance of general relativity,” which suddenly took on great significance for astrophysics and cosmology. In the days of Einstein and Eddington, one could imagine a gravitational field so strong that it would produce a black hole, a true space–time singularity. People talked about such things, but hardly anyone believed they could actually occur (Thorne 1994). Yet after Penrose and Hawking proved the celebrated singularity theorems (Earman 1999; Hawking and Ellis 1973), experts began to look for evidence that might confirm the existence of black holes. This was only one of many unexpected developments in GR that helped to inaugurate a revolutionary shift in our understanding of the universe. Truly momentous discoveries soon followed, leading to findings that would eventually shatter the quaint universe inhabited by Albert Einstein at the time he unveiled his general theory of relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Scott Walter pointed out to me that, on a purely quantitative basis, there is no clear evidence of any ebb in publication numbers with respect to other branches of physics, particularly if unification theories as taken into account.

  2. 2.

    This flurry of activity also involved a good deal of conceptual confusion, as recently discussed in Darrigol (2015).

  3. 3.

    The passage in quotation marks was taken from de Sitter’s 1908 inaugural lecture as professor of astronomy in Leyden.

  4. 4.

    Michel Janssen argues that this was the hidden agenda behind Einstein’s cosmological speculations, namely to show that the cosmological problem could be tackled within the framework of general relativity without encountering some kind of contradiction (Janssen 2014, 207–208).

  5. 5.

    These letters can be found in CPAE 8B. (1998b). Hubert Goenner explored Weyl’s changing attitudes toward relativstic cosmology in his interesting paper Goenner (2001). Commenting on Weyl’s earliest work, Goenner was struck by how a mathematician of his caliber could have been misled by these special types of coordinates systems, which only cover part of the manifold, into thinking that the boundary of a coordinate batch contained a real singularity. To a modern expert on GR, this seems especially odd since de Sitter space–time has constant curvature and so is homogeneous and isotropic.

  6. 6.

    For a survey of the connections between metrized projective geometries and their associated space–times, see Liebscher (2005).

  7. 7.

    (Mercier and Kervaire (1955, 145); the question was posed by the Hambrug cosmologist Otto Heckmann).

  8. 8.

    Isotropy here means with respect to the directions of light. Tits calls a Lorentzian manifold M isotropic at a point p if the isometries of M that fix p act transitively on the directions of light issuing from p, (ds 2 = 0). This is equivalent to requiring the existence of a space-like 3-plane ω containing p such that the isometries fixing p and ω act transitively on the lines of the light cone in ω.

  9. 9.

    For a visual tour of de Sitter space and its various coordinatizatons and (partial) foliations, see Moschella (2005).

  10. 10.

    Einstein had actually written words to this effect, but then he struck the sentence out before sending off his note. See Frenkel (2002).

References

  • Bergia, Silvio, and Lucia Mazzoni. 1999. Genesis and Evolution of Weyl’s Reections on de Sitter’s Universe. In The Expanding Worlds of General Relativity, Einstein Studies, ed. H. Goenner, et al., vol. 7, 325–342. Boston: Birkhäuser.

    Google Scholar 

  • Bessel-Hagen, Erich. 1921. Über die Erhaltungsätze der Elektrodynamik. Mathematische Annalen 84: 258–276.

    Article  MathSciNet  MATH  Google Scholar 

  • Coxeter, H.S.M. 1943. A Geometrical Background for de Sitter’s World. American Mathematical Monthly 50: 217–228.

    Article  MathSciNet  MATH  Google Scholar 

  • CPAE 6. 1996. Collected Papers of Albert Einstein, Vol. 6: The Berlin Years: Writings, 1914–1917, ed. A.J. Kox et al. Princeton: Princeton University Press.

    Google Scholar 

  • CPAE 7. 2002. Collected Papers of Albert Einstein, Vol. 7: The Berlin Years: Writings, 1918–1921, ed. Michel Janssen et al. Princeton: Princeton University Press.

    Google Scholar 

  • CPAE 8A. 1998a. Collected Papers of Albert Einstein, Vol. 8A: The Berlin Years: Correspondence, 1914–1917, ed. Robert Schulmann et al. Princeton: Princeton University Press.

    Google Scholar 

  • CPAE 8B. 1998b. Collected Papers of Albert Einstein, Vol. 8A: The Berlin Years: Correspondence, 1918, ed. Robert Schulmann et al. Princeton: Princeton University Press.

    Google Scholar 

  • CPAE 10. 2006. Collected Papers of Albert Einstein, Vol. 10: The Berlin Years: Correspondence, May-December 1920, ed. Diana Kormos Buchwald et al. Princeton: Princeton University Press.

    Google Scholar 

  • CPAE 13. 2012. Collected Papers of Albert Einstein, Vol. 13: The Berlin Years: Writings & Correspondence, January 1922 to March 1923, ed. Diana Kormos Buchwald et al. Princeton: Princeton University Press.

    Google Scholar 

  • Darrigol, Olivier. 2015. Mesh and Measure in Early General Relativity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52: 163–187.

    Article  MathSciNet  MATH  Google Scholar 

  • De Sitter, Willem. 1911. On the Bearing of the Principle of Relativity on Gravitational Astronomy. MNRAS 71: 388–415.

    Google Scholar 

  • De Sitter, Willem. 1912. Absorption of Gravitation. Observatory 35: 387–393.

    Google Scholar 

  • De Sitter, Willem. 1913. Some Problems of Astronomy. VII The Secular Variation of the Elements of the Four Inner Planets. Observatory 36: 296–303.

    Google Scholar 

  • De Sitter, Willem. 1917a. On the Relativity of Inertia. Remarks Concerning Einstein’s Latest Hypothesis. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 19(1916–17): 1217–1225.

    Google Scholar 

  • De Sitter, Willem. 1917b. On the Curvature of Space. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 20(1917–18): 229–243.

    Google Scholar 

  • De Sitter, Willem. 1917c. On Einstein’s Theory of Gravitation, and its Astronomical Consequences. Third Paper, Royal Astronomical Society, Monthly Notices 78: 3–28.

    Google Scholar 

  • De Sitter, Willem. 1918. Further Remarks on the Solutions of the Field Equations of Einstein’s Theory of Gravitation. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 20: 1309–1312.

    Google Scholar 

  • De Sitter, Willem. 1920. On the Possibility of Statistical Equilibrium of the Universe. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 23(1920–22): 866–868.

    Google Scholar 

  • Du Val, Patrick. 1924. Geometrical Note on de Sitter’s World. Philosophical Magazine 47: 930–938.

    Google Scholar 

  • Earman, John. 1995. Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes. Oxford: Oxford University Press.

    Google Scholar 

  • Earman, John. 1999. The Penrose-Hawking Singularity Theorems: History and Implications. In The Expanding Worlds of General Relativity, Einstein Studies, ed. H. Goenner, et al., vol. 7, 235–270. Boston: Birkhäuser.

    Google Scholar 

  • Einstein, Albert. 1916. Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, physikalisch-math. Klasse, 1916: 688–696; Reprinted in (CPAE 6. 1996, 347–356).

    Google Scholar 

  • Einstein, Albert. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, physikalisch-math. Klasse, 1917, 142–152; Reprinted in (CPAE 6. 1996, 142–152).

    Google Scholar 

  • Einstein, Albert. 1918a. Prinzipielles zur allgemeinen Relativitätstheorie. Annalen der Physik 55: 241–244; Reprinted in (CPAE 7. 2002, 38–41).

    Google Scholar 

  • Einstein, Albert. 1918b. Kritisches zu einer von Hrn. De Sitter gegebenen Lösung der Gravitationsgleichungen, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, physikalisch-math. Klasse, 270–272; Reprinted in (CPAE 7. 2002, 46–48).

    Google Scholar 

  • Einstein, Albert. 1920. Aether und Relativitätstheorie. Berlin: Julius Springer; Reprinted in (CPAE 7. 2002, 306–320).

    Google Scholar 

  • Einstein, Albert. 1922. Vier Vorlesungen über Relativitätstheorie gehalten im Mai 1921 an der Universität Princeton. Braunschweig: Vieweg, 1922; Reprinted in (CPAE 7. 2002, 497–569). English trans., The Meaning of Relativity, London: Methuen.

    Google Scholar 

  • Eisenstaedt, Jean. 1988a. The Early Interpretation of the Schwarzschild Solution. In Einstein and the History of General Relativity, Einstein Studies, ed. Don Howard and John Stachel, vol. 1, 213–233. Boston: Birkhäuser.

    Google Scholar 

  • Eisenstaedt, Jean. 1988b. The Low Water Mark of General Relativity, 1925–1955, In Einstein and the History of General Relativity, Einstein Studies, ed. Don Howard and John Stachel, vol. 1, 277–292. Boston: Birkhäuser.

    Google Scholar 

  • Ellis, George F.R. 1988. The Expanding Universe: A History of Cosmology from 1917 to 1960. In Einstein and the History of General Relativity, Einstein Studies, ed. Howard, Don, and John Stachel, vol. 1, 367–432. Boston: Birkhäuser.

    Google Scholar 

  • Frenkel, Viktor. 2002. Einstein and Friedmann. In Einstein Studies in Russia, Einstein Studies, ed. Balashov, Yuri, and Vladimir Vizgin, vol. 10, 1–16. Boston: Birkhäuser.

    Google Scholar 

  • Goenner, Hubert. 2001. Weyl’s Contributions to Cosmology. In [Sch 2001a], pp. 105–137.

    Google Scholar 

  • Hawking, S.W., and G.F.R. Ellis. 1973. The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Holton, Gerald. 1960. Notes on the Religious Orientation of Scientists. In Science Ponders Religion, ed. Harlow Shapley. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Janssen, Michel. 2014. ‘No Success like Failure …’: Einstein’s Quest for General Relativity, 1907–1920. In [Jan and Leh 2014], 167–227.

    Google Scholar 

  • Janssen, Michel, and Christoph Lehner eds. 2014. The Cambridge Companion to Einstein. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kerszberg, Pierre. 1989. The Invented Universe: The Einstein-De Sitter Controversy (1916–1917) and the Rise of Relativistic Cosmology. Oxford: Clarendon Press.

    Google Scholar 

  • Klein, Felix. 1871. Über die sogenannte Nicht-Euklidische Geometrie. Mathematische Annalen 4: 573–625; Reprinted in [Kl-GMA], vol. 1, 254–306.

    Google Scholar 

  • Klein, Felix. 1872. Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert; Reprinted in [Kl-GMA], vol. 1, 460–497.

    Google Scholar 

  • Klein, Felix. 1910. Über die geometrischen Grundlagen der Lorentzgruppe. Jahresbericht der Deutschen Mathematiker-Vereinigung, 19: 281–300; Reprinted in [Kl-GMA], vol. 1, 533–552.

    Google Scholar 

  • Klein, Felix. 1917. Zu Hilberts erster Note über die Grundlagen der Physik. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen 1917: 469–482; Reprinted in [Kl-GMA], vol. 1, pp. 553–567.

    Google Scholar 

  • Klein, Felix. 1918a. Bemerkungen über die Beziehungen des de Sitter’schen Koordinatensystems B zu der allgemeinen Welt konstanter positiver Krümmung. Koninklijke Akademie van Wetenschappen te Amsterdam. Proceedings 20: 614–615.

    Google Scholar 

  • Klein, Felix. 1918b. Über die Integralform der Erhaltungssätze und die Theorie der räumlich-geschlossenen Welt. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen 1918: 394–423; Reprinted in [Kl-GMA], vol. 1, 586–612.

    Google Scholar 

  • Kragh, Helge. 1996. Cosmology and Controversy. Princeton: Princeton University Press.

    Google Scholar 

  • Liebscher, D.-E. 2005. The Geometry of Time. Weinheim: Wiley-VCH.

    Book  MATH  Google Scholar 

  • Lorentz, H.A., et al. 1922. Das Relativitäsprinzip. Eine Sammlung von Abhandlungen, 4th ed. Leipzig: Teubner. English trans., The Principle of Relativity, London: Methuen, 1923.

    Google Scholar 

  • Martins, Roberto de Andrade. 1999. The Search for Gravitational Absorption in the early Twentieth Century. In The Expanding Worlds of General Relativity, Einstein Studies, ed. H. Goenner, et al., vol. 7, 1–44. Boston: Birkhauser.

    Google Scholar 

  • Mercier, André, and Michel Kervaire eds. 1956. Fünfzig Jahre Relativitätstheorie/Cinquantenaire de la Théorie de la Relativité/Jubilee of Relativity Theory, Helvetica Physica Acta, Supplementum IV. Basel: Birkhäuser.

    Google Scholar 

  • Minkowski, Hermann. 1909. Raum und Zeit. Physikalische Zeitschrift 10: 104111; English trans., The Principle of Relativity, London: Methuen, 1923: 73–91.

    Google Scholar 

  • Moschella, Ugo. 2005. The de Sitter and anti-de Sitter Sightseeing Tour. Seminar Poincaré 1. http://www.bourbaphy.fr/moschella.pdf.

  • Noether, Emmy. 1918. Invariante Variationsprobleme, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 235–257.

    Google Scholar 

  • North, John. 1965. The Measure of the Universe: a History of Modern Cosmology. Oxford: Oxford University Press.

    Google Scholar 

  • Norton, John. 1999. The Cosmological Woes of Newtonian Gravitation Theory. In The Expanding Worlds of General Relativity, Einstein Studies, ed. H. Goenner, et al., vol. 7, 271–324. Boston: Birkhauser.

    Google Scholar 

  • Pais, Abraham. 1982. Subtle is the Lord. The Science and the Life of Albert Einstein. Oxford: Clarendon Press.

    Google Scholar 

  • Pauli, Wolfgang. 1921. Relativitätstheorie, Encyklopädie der mathematischen Wissenschaften. 5: part 2 539–775; English trans., Theory of Relativity, London: Pergamon, 1958.

    Google Scholar 

  • Pauli, Wolfgang. 1979. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., ed. Karl von Meyenn, Armin Hermann, Victor F. Weisskopf, Bd. 1. Heidelberg: Springer.

    Google Scholar 

  • Robertson, H.P. 1933. Relativistic Cosmology. Review of Modern Physics 5: 62–90.

    Article  MATH  Google Scholar 

  • Röhle, Stefan. 2002. Mathematische Probleme in der Einstein-de Sitter Kontroverse, Examensarbeit, JGU Mainz, 2000, Max-Planck-Institut für Wissenschaftsgeschichte, Preprint Nr. 210.

    Google Scholar 

  • Röhle, Stefan. 2007. Willem de Sitter in Leiden: ein Kapitel in der Entwicklung der relativistischen Kosmologie. Dissertation, JGU Mainz.

    Google Scholar 

  • Rowe, David E. 1999. The Göttingen Response to General Relativity and Emmy Noether’s Theorems. In The Symbolic Universe. Geometry and Physics, 1890–1930, ed. Jeremy Gray, 189–233. Oxford: Oxford University Press.

    Google Scholar 

  • Rowe, David E. 2006. Einstein’s Allies and Enemies: Debating Relativity in Germany, 1916–1920. In Interactions: Mathematics, Physics and Philosophy, 1860–1930, Boston Studies in the Philosophy of Science, ed. Vincent F. Hendricks, et al., vol. 251, 231–280. Dordrecht: Springer.

    Google Scholar 

  • Rowe, David E. 2012. Einstein and Relativity. What Price Fame? Science in Context 25(2): 197–246.

    Article  MathSciNet  Google Scholar 

  • Rowe, David E. 2015. Einstein und die Anfänge der relativistischen Kosmologie, 1917–1924. Mitteilungen der Mathematischen Gesellschaft Hamburg 35: 93–136.

    MathSciNet  MATH  Google Scholar 

  • Rynasiewicz, Robert. 1999. Kretschmann’s Analysis of Covariance and Relativity Principles. In The Expanding Worlds of General Relativity, Einstein Studies, ed. H. Goenner, et al., vol. 7, 431–462. Boston: Birkhauser.

    Google Scholar 

  • Scholz, Erhard. 2001b. Weyls Infinitesimalgeometrie (1917–1925). In [Sch 2001a], 48–104.

    Google Scholar 

  • Smeenk, Christopher. 2014. Einstein’s Role in the Creation of Relativstic Cosmology. In [Jan and Leh 2014], 228–269.

    Google Scholar 

  • Thorne, Kip S. 1994. Black Holes and Time Warps: Einstein’s Outrageous Legacy. New York: W.W. Norton.

    MATH  Google Scholar 

  • Weyl, Hermann. 1918. Raum-Zeit-Materie. Vorlesungen über allgemeine Relativitätstheorie. Berlin: Springer.

    MATH  Google Scholar 

  • Weyl, Hermann. 1924. Massenträgheit und Kosmos. Ein Dialog, Die Naturwissenschaften 12: 197–204.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Michel Janssen, Erhard Scholz, and Scott Walter for their comments on an earlier version of this paper. This being a snapshot of a complex story, I have tried to tell part of it here without taking in other contemporaraneous developments that would require serious attention in a more comprehensive study. Historical and mathematical details connected with the Einstein–de Sitter debates and other related matters can be found in several of the references cited below.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rowe, D.E. (2018). Debating Relativistic Cosmology, 1917–1924. In: A Richer Picture of Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-67819-1_24

Download citation

Publish with us

Policies and ethics