Skip to main content

A Comparison of Smoothing and Filtering Approaches Using Simulated Kinematic Data of Human Movements

  • Conference paper
  • First Online:
Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017) (IACSS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 663))

Included in the following conference series:

Abstract

Gathered kinematic data usually requires post-processing in order to handle noise. There a three different approaches frequently used: local regression & moving average algorithms, and Butterworth filters. In order to examine the most appropriate post-processing approach and its optimal settings to human upper limb movements, we examined how far the approaches were able to reproduce a simulated movement signal with overlaid noise. We overlaid a simulated movement signal (movement amplitude 80 cm) with normal distributed noise (standard deviation of 0.5 cm). The resulting signal was post-processed with local regression and moving average algorithms as well as Butterworth filters with different settings (spans/orders). The deviation from the original simulated signal in four kinematic parameters (path length, maximum velocity, relative activity, and spectral arc length) was calculated and checked for a minimum. The unprocessed noisy signal showed absolute mean deviations of 54.78% ± 12.16% in the four kinematic parameters. The local regression algorithm revealed the best performance at a span of 420 ms with an absolute mean deviation of 2.00% ± 0.86%. For spans between 280–690 ms the local regression algorithm still revealed deviations below 5%. Based on our results we suggest a local regression algorithm with a span of 420 ms for smoothing noisy kinematic data in upper limb performance, e.g., activities of daily living. This suggestion applies to kinematic data of human movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gulde, P., Hughes, C., Hermsdörfer, J.: Effects of stroke on ipsilesional end-effector kinematics in a multi-step activity of daily living. Front. Hum. Neurosci. 11(42) (2017). doi:10.3389/fnhum.2017

  2. Hermsdörfer, J., Hentze, S., Goldenberg, G.: Spatial and kinematic features of apraxic movement depend on the mode of execution. Neuropsychologia 44, 1642–1652 (2006)

    Article  Google Scholar 

  3. Bieńkiewicz, M., Gulde, P., Goldenber, G., Hermsdörfer, J.: Harmonicity of the movement as a measure of apraxic behavior in stroke survivors. Biosignals, 295–300 (2014)

    Google Scholar 

  4. Zhao, Z.-X., Wen, L., Qu, T.-B., Hou, L.-L., Xiang, D., Bin, J.: Kinematic analysis of a posterior-stabilized knee prosthesis. Chinese Med. J. 128, 216–221 (2015)

    Article  Google Scholar 

  5. Goujon, H., Bonnet, X., Sautreuil, P., Maurisset, M., Darmon, L., Fode, P., Lavaste, F.: A functional evaluation of prosthetic foot kinematics during lower-limb amputee gait. Prosthet. Orthot. Int. 30, 213–223 (2006)

    Article  Google Scholar 

  6. Selles, R., Bussmann, J., Wagenaar, R., Stam, H.: Effects of prosthetic mass and mass distribution on kinematics and energetics of prosthetic gait: a systematic review. Arch. Phys. Med. Rehabil. 80, 1593–1599 (1999)

    Article  Google Scholar 

  7. Lee, K.-S., Jung, M.-C.: Ergonomic evaluation of biomechanical hand function. Saf. Health Work 6, 9–17 (2015)

    Article  Google Scholar 

  8. Schiele, A., van der Helm, F.: Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 456–469 (2006)

    Article  Google Scholar 

  9. Fiolkowski, P., Horodyski, M., Bishop, M., Williams, M., Stylianou, L.: Changes in gait kinematics and posture with the use of a front pack. Ergonomics 49, 885–894 (2006)

    Article  Google Scholar 

  10. Krzysztof, M., Mero, A.: A kinematics analysis of three best 100 M performances ever. J. Hum. Kinet. 36, 149–160 (2013)

    Article  Google Scholar 

  11. Matheson, E., Hwang, Y., Romack, J., Whiting, W., Vrongistinos, K.: A kinematic analysis of the breast stroke kick. Portuguese J. Sport Sci. 11, 319–322 (2011)

    Google Scholar 

  12. Erdmann, W., Lipinska, P.: Kinematics of marathon running tactics. Hum. Mov. Sci. 32, 1379–1392 (2013)

    Article  Google Scholar 

  13. Gulde, P., Hermsdörfer, J.: Both hands at work: the effect of aging on upper-limb kinematics in a multi-step activity of daily living. Exper. Brain Res. 235, 1337–1348 (2017). doi:10.1007/s00221-017-4897-4

    Article  Google Scholar 

  14. Dingwell, J., Joubert, J., Diefenthaeler, F., Trinity, J.: Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans. Biomed. Eng. 55, 2666–2674 (2008)

    Article  Google Scholar 

  15. Seiberl, W., Hahn, D., Paternoster, F.: Reduced activation in isometric muscle action after lengthening contractions is not accompanied by reduced performance fatigability Sci. Rep. 6 (2016)

    Google Scholar 

  16. Smith, G.: Padding point extrapolation techniques for the butterworth digital filter. J. Biomech. 22, 967–971 (1989)

    Article  Google Scholar 

  17. Yu, B., Gabriel, D., Noble, L., An, K.-N.: Estimate of the optimum cutoff frequency for the butterworth low-pass digital filter. J. Appl. Biomech. 15, 3 (1999)

    Article  Google Scholar 

  18. Wood, G.: Data smoothing and differentiation procedures in biomechanics. Exer. Sport Sci. Rev. 10, 308–362 (1982)

    Article  Google Scholar 

  19. Flash, T., Henis, E.: Arm trajectory modifications during reaching towards visual targets. J. Cogn. Neurosci. 3, 220–230 (1991)

    Article  Google Scholar 

  20. Balasubramanian, S., Melendez-Calderon, A., Burdet, E.: A robust and sensitive metric for quantifying movement smoothness. IEEE Trans. Biomed. Eng. 59, 2126–2136 (2012)

    Article  Google Scholar 

  21. Hogan, N., Sternad, D.: Sensitivity of smoothness measures to movement duration. Amplitude Arrests J. Motor Behav. 41, 529–534 (2009)

    Article  Google Scholar 

  22. Rohrer, B., et al.: Movement smoothness changes during stroke recovery. J. Neurosci. 22, 8297–8304 (2002)

    Google Scholar 

  23. Bangert, A., Reuter-Lorenz, P., Walsh, W., Schachter, A., Seidler, R.: Bimanual coordiantion and aging: neurobehavioral implications. Neuropsychologia 48, 1165–1170 (2010)

    Article  Google Scholar 

  24. Bellgrove, M., Phillips, J., Bradshaw, J., Gallucci, R.: Response (re-)programming in aging: a kinematic analysis the gerontological society of America. 53A, 222–227 (1998)

    Google Scholar 

  25. Wu, C.-Y., Lin, K.-C., Chen, H.-C., Chen, I.-H., Hong, W.-H.: Effects of modified constraint-induced movement therapy on movement kinematics and daily function in patients with stroke: a kinematic study of motor control mechanisms. Neurorehabilitation Neural Repair 21, 460 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Gulde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Gulde, P., Hermsdörfer, J. (2018). A Comparison of Smoothing and Filtering Approaches Using Simulated Kinematic Data of Human Movements. In: Lames, M., Saupe, D., Wiemeyer, J. (eds) Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017). IACSS 2017. Advances in Intelligent Systems and Computing, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-319-67846-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67846-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67845-0

  • Online ISBN: 978-3-319-67846-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics