Skip to main content

Object Detection and Localization Using Compressed Sensing

  • Conference paper
  • First Online:
Advances in Signal Processing and Intelligent Recognition Systems (SIRS 2017)

Abstract

Localization is very significant in Underwater Sensor Network (UWSN) applications. The functionality of the network can face challenges by the force of water current and hostile environmental conditions. This work presents a method for localization using Compressed Sensing (CS). It is implemented without using GPS technology which makes the method reliable. CS is employed in the data acquisition module for transmission and reconstruction of audio signal. It is a dictionary based execution exploiting \(l_1\) minimization using Gabor transform. Here, localization using audio is performed using Time Difference of Arrival (TDOA). Moore-Penrose pseudo-inverse is used for matrix operations. An array of audio sensors or hydrophones is assumed while performing this work. The results of simulation indicate that this is an efficient technique for object detection and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, L., Wu, C., Zhang, Y., Wu, H., Li, M., Maple, C.: A survey of localization in wireless sensor network. Int. J. Distrib. Sens. Netw. 1–5 (2012). Hindawi Publishing Corporation

    Google Scholar 

  2. Nuo, W., Ming-Lei, S., Ming, Y., Yuanyuan, Y., Jiyong, X.: A localization algorithm for underwater wireless sensor networks with the surface deployed mobile anchor node. In: Sixth International Conference on Intelligent Systems Design and Engineering Applications, pp. 30–32 (2015)

    Google Scholar 

  3. Weng, L., Li, M., Gong, Z.: On sonar image processing techniques for detection and localization of underwater objects. Appl. Mech. Mater. 236–237, 509–514 (2012)

    Article  Google Scholar 

  4. Zao, S.: Automatic underwater multiple objects detection and tracking using sonar imaging. ACM Digital Library, pp. 14–35 (2010)

    Google Scholar 

  5. Akshaya, B., Narmadha, V., Sree Sharmila, T., Rajendran, V.: Sparse representation to localize objects in underwater acoustic images. In: IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–5. Coimbatore, India, August 2015

    Google Scholar 

  6. Ismail, M.F.F.B., Yie, L.W.: Acoustic monitoring system using wireless sensor networks. Procedia Eng. 41, 68–74 (2012). In: International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012), Science Direct

    Article  Google Scholar 

  7. Suzuki, T., Kato, K., Makihara, E., Kobayashi, T., Kono, H., Sawai, K., Kawabata, K., Takemura, F., Isomura, N., Yamashiro, H.: Development of underwater monitoring wireless sensor network to support coral reef observation. Int. J. Distrib. Sens. Netw. 2014, 1–10 (2014). Hindawi Publishing Corporation, Article ID: 189643

    Google Scholar 

  8. Tavakoli, A., Pourmohammad, A.: Image denoising based on compressed sensing. Int. J. Comput. Theor. Eng. 4(2), 266–269 (2012)

    Article  Google Scholar 

  9. Jiang, H., Mathews, B., Wilford, P.: Sound localization using compressed sensing. In: Proceedings of SENSORNETS, pp. 159–166 (2012)

    Google Scholar 

  10. Christensen, M.G., Ostergaard, J., Jensen, S.H.: On compressed sending and its applications to speech and audio signals. In: Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers (2009)

    Google Scholar 

  11. Griffin, A., Tsakalides, P.: Compressed sensing of audio signals using multiple sensors. In: 16th European Signal Processing Conference (2008)

    Google Scholar 

  12. Dong, Z., Yu, M.: Research on TDOA based microphone array acoustic localization. In: IEEE 12th International Conference on Electronic Measurement and Instruments (2015)

    Google Scholar 

  13. Peyre, G., Fadili, J.M.: Learning analysis sparsity priors. In: Sampta11, Singapore, 4 pp. (2011)

    Google Scholar 

  14. Postolache, O., Pereira, M.D., Girao, P.: Intelligent distributed virtual system for underwater acoustic source localization and sounds classification. In: IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 6–8 September 2007 (2007)

    Google Scholar 

  15. Bektas, S., Sisman, Y.: The comparison of L1 and L2-norm minimization methods. Int. J. Phys. Sci. 5, 1721–1727 (2010)

    Google Scholar 

  16. Cands, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Sig. Process. Mag. 25, 21–30 (2008)

    Article  Google Scholar 

  17. Bensky, A.: Wireless Positioning Technologies and Applications, 2nd edn. Artech House book (2016)

    Google Scholar 

  18. Deotale, P.A., Jani, P.V.: Compressed sensing for object detection using dictionary learning. In: International Conference on Computational Intelligence in Data Science, June 2017

    Google Scholar 

  19. Baldacci, A., Haralabus, G.: Signal processing for an active sonar system suitable for advanced sensor technology applications and environmental adaptation schemes. In: EUSIPCO 2006, European Signal Processing Conference, Florence, Italy, 4–8 September 2006 (2006)

    Google Scholar 

  20. Mandic, F., Rendulic, I., Miskovic, N., NaZ, Y.: Underwater object tracking using sonar and USBL measurements. J. Sens. 2016, 10 pages (2016). Hindawi Publishing Corporation

    Google Scholar 

  21. Weng, L., Li, M., Gong, Z.: On sonar image processing techniques for detection and localization of underwater objects. Appl. Mech. Mater. 236–237(2012), 509–514 (2012)

    Article  Google Scholar 

  22. Ghosn, S.B., Drouby, F., Harmanani, H.M.: A parallel genetic algorithm for the open-shop scheduling problem using deterministic and random moves. Int. J. Artif. Intell. 14(1), 130–144 (2016)

    Google Scholar 

  23. Saha, A., Das, S.: Optimizing cluster structures with inner product induced norm based dissimilarity measures theoretical development and convergence analysis. Inf. Sci. 372, 796–814 (2016)

    Article  Google Scholar 

  24. Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers. Expert Syst. Appl. 41, 1168–1175 (2014). Elsevier

    Article  Google Scholar 

  25. Johanyak, Z.C., Papp, O.: A hybrid algorithm for parameter tuning in fuzzy model identification. Acta Polytech. Hung. 9(6), 153–165 (2012)

    Google Scholar 

  26. Mesmoudi, A., Feham, M., Labraoui, N.: Wireless sensor networks localization algorithms: a comprehensive survey. Int. J. Comput. Netw. Commun. (IJCNC) 5(6), 45–64 (2013)

    Google Scholar 

  27. Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with noisy range measurements. In: SenSys 2004 Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, 3–5 November 2004 (2004)

    Google Scholar 

  28. Doherty, L., Pister, K.S.J., El Ghaoui, L.: Convex position estimation inWireless sensor networks. In: INFOCOM 2001, Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings. IEEE, 07 August 2002

    Google Scholar 

  29. Han, G., Jiang, J., Shu, L., Xu, Y., Wang, F.: Localization algorithms of underwater wireless sensor networks: a survey. Sensors (Basel) 12, 2026–2061 (2012)

    Article  Google Scholar 

  30. Dong, B., Mahdy, A.M.: GPS-free localization schemes for underwater wireless sensor networks. In: Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (2009)

    Google Scholar 

  31. Maranda, B.H.: Passive sonar. In: Handbook of Signal Processing in Acoustics, pp. 1757–1781. Springer (2008)

    Google Scholar 

  32. Zora, M., Buscaino, G., Buscaino, C., D’Anca, F., Mazzola, S.: Acoustic signals monitoring in shallow marine waters: technological progress for scientific data acquisition. Proc. Earth Planet. Sci. 4, 80–92 (2011). SciVerse ScienceDirect

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sardar Patel Institute of Technology, India for providing the necessary facilities for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Ashok Deotale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Deotale, P.A., Vinayakray-Jani, P. (2018). Object Detection and Localization Using Compressed Sensing. In: Thampi, S., Krishnan, S., Corchado Rodriguez, J., Das, S., Wozniak, M., Al-Jumeily, D. (eds) Advances in Signal Processing and Intelligent Recognition Systems. SIRS 2017. Advances in Intelligent Systems and Computing, vol 678. Springer, Cham. https://doi.org/10.1007/978-3-319-67934-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67934-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67933-4

  • Online ISBN: 978-3-319-67934-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics