Skip to main content

Neural Stimulator Design

  • Chapter
  • First Online:
Brain-Machine Interface
  • 1355 Accesses

Abstract

Neural stimulation is a widely used technique in neuroscience research and clinical therapies. An electrical stimulator needs to meet high-level requirements for safety, reliability, programmability, with a minimum heat dissipation. This work first gives an overview of neural stimulator design, including the physicochemical background, design requirements, system topologies, and circuit techniques. Methods for stimulus generation, stimulation waveforms, electrode configuration, and charge balancing techniques are reviewed and analyzed in detail. Then, the design and testing of a fully programmable multi-functional stimulator are presented. In addition, a novel stimulation strategy is proposed to achieve charge balancing in existence of irreversible electrochemical processes and unrecoverable charge injection. A high-efficiency net-zero charge neural stimulator is designed using the proposed strategy. The fabricated chip has been successfully verified in both bench testing and animal experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Blum, J. Ross, E.A. Brown, S.P. DeWeerth, An integrated system for simultaneous, multichannel neuronal stimulation and recording. IEEE Trans. Circuits Syst. I Regul. Pap. 54(12), 2608–2618 (2007)

    Article  Google Scholar 

  2. F. Shahrokhi, K. Abdelhalim, The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)

    Article  Google Scholar 

  3. M. Azin, D.J. Guggenmos, S. Barbay, R.J. Nudo, P. Mohseni, A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. J. Solid State Circuits 46(4), 731–745 (2011)

    Article  Google Scholar 

  4. X. Liu, M. Zhang, A.G. Richardson, T.H. Lucas, J. Van der Spiegel, Design of a closed-loop, bi-directional brain machine interface system with energy efficient neural feature ex-traction and PID control. IEEE Trans. Biomed. Circuits Syst. 11(4), 729–742 (2017). http://ieeexplore.ieee.org/abstract/document/7786863/

    Article  Google Scholar 

  5. T. Denison, K. Consoer, W. Santa, A. Avestruz, J. Cooley, A. Kelly, A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 42(12), 2934–2945 (2007)

    Article  Google Scholar 

  6. R. Sarpeshkar, Ultra Low Power Bioelectronics (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  7. W.M.C. Sansen, Analog Design Essentials (Springer, Berlin, 2006)

    Google Scholar 

  8. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  9. M. Ghovanloo, K. Iniewski, Integrated circuits for neural interfacing: neural stimulation, VLSI Circuits for Biomedical Applications (2008), pp. 191–199

    Google Scholar 

  10. Wikipedia, Electrical brain stimulation. https://en.wikipedia.org/wiki/Electrical_brain_stimulation

  11. S.A.P. Haddad, R.P.M. Houben, W.A. Serdijin, The evolution of pacemakers. IEEE Eng. Med. Bio Mag. 25(3), 38–48 (2006)

    Article  Google Scholar 

  12. A. Demosthenous, I.F. Triantis, X. Liu, Circuits for implantable neural recording and stimulation (2008), pp. 207–240

    Google Scholar 

  13. Wikipedia, Neurostimulation. https://en.wikipedia.org/wiki/Neurostimulation

  14. Z.B. Kagan, A.K. RamRakhyani, G. Lazzi, R.A. Normann, D.J. Warren, In vivo magnetic stimulation of rat sciatic nerve with centimeter- and millimeter-scale solenoid coils. IEEE Trans. Neural Syst. I Rehabil. Eng. 24(11), 1138–1147 (2016)

    Article  Google Scholar 

  15. S.W. Lee, S. Fried, Enhanced control of cortical pyramidal neurons with micro-magnetic stimulation. IEEE Trans. Neural Syst. I Rehabil. Eng. 99 (2016). doi:10.1109/TNSRE.2016.2631446

    Google Scholar 

  16. R.D. Meyer, S.F. Cogan, T.H. Nguyen, R.D. Rauh, Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans. Neural Syst. I Rehabil. Eng. 9(1), 2–11 (2001)

    Article  Google Scholar 

  17. J. Chen, K.D. Wise, J.F. Hetke, S.C. Bledsoe, A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44(8), 760–769 (1997)

    Article  Google Scholar 

  18. K. Paralikar, P. Cong, W. Santa, D. Dinsmoor, B. Hocken, G. Munns, J. Giftakis, T. Denison, An implantable 5mw/channel dual-wavelength optogenetic stimulator for therapeutic neuromodulation research. ISSCC Digest of Technical Papers, Feb 2010, pp. 238–240

    Google Scholar 

  19. K. Paralikar, P. Cong, O. Yizhar, L.E. Fenno, W. Santa, C. Nielsen, D. Dinsmoor, B. Hocken, G.O. Munns, J. Giftakis, K. Deisseroth, T. Denison, An implantable optical stimulation delivery system for actuating an excitable biosubstrate. J. Solid State Circuits 46(1), 321–332 (2011)

    Article  Google Scholar 

  20. K. Iniewski, VLSI Circuits for Biomedical Applications (Artech house Inc, Boston, 2008)

    Google Scholar 

  21. D.R. Merrill, M. Bikson, J.G.R. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141(2), 171–198 (2005)

    Article  Google Scholar 

  22. S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  23. D.A. Borkholder. Cell based sensors using microelectrodes. Ph.D. Dissertation, Stanford University (1998)

    Google Scholar 

  24. R.A. Blum, J.D. Ross, S.K. Das, E.A. Brown, S.P. DeWeerth, Models of stimulation artifacts applied to integrated circuit design, in Proceedings of the 26th Annual International Conference of the IEEE EMBS, Sept (2004)

    Google Scholar 

  25. J. Sit, R. Sarpeshkar, A low-power blocking-capacitor-free with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans. Biomed. Circuits Syst. 1(3), 172–183 (2007)

    Article  Google Scholar 

  26. S. Kelly, J. Wyatt, A power-efficient neural tissue stimulator with energy recovery. IEEE Trans. Biomed. Circuits Syst. 5(1), 20–29 (2011)

    Article  Google Scholar 

  27. L. Wong, S. Hossain, A. T. Jorgen Edivinsson, D. Rivas, and H. Haas. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. J. Solid State Circuits 39(12), 2446–2456 (2004)

    Article  Google Scholar 

  28. B. Thurgood, D. Warren, N.M. Ledbetter, G.A. Clark, R.R. Harrison, A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Trans. Biomed. Circuits Syst. 3(6), 405–414 (2009)

    Article  Google Scholar 

  29. M. Sivaprakasam, W. Liu, M. Humayun, J. Weiland, A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device. IEEE J. Solid State Circuits 40(3), 763–771 (2005)

    Article  Google Scholar 

  30. X. Liu, M. Zhang, H. Sun, A.G. Richardson, T.H. Lucas, J. Van der Spiegel, Design of a net-zero charge neural stimulator with feedback control, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct (2014)

    Google Scholar 

  31. M. Ghovanloo, Switched-capacitor based implantable low-power wireless microstimulating systems. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2197–2200 (2006)

    Google Scholar 

  32. H. Lee, K.Y. Kwon, W. Li, A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. 50(1), 360–374 (2015)

    Google Scholar 

  33. X. Liu, A. Demosthenous, N. Donaldson, An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors. IEEE Trans. Biomed. Circuits Syst. 2(3), 231–244 (2008)

    Article  Google Scholar 

  34. M. Sahin, Y. Tie, Non-rectangular waveforms for neural stimulation with practical electrodes. J. Neural Eng. 4, 227–233 (2007)

    Article  Google Scholar 

  35. C.M. Zierhofer, I.J. Hochmair-Desoyer, E.S. Hochmair, Electronic de- sign of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Neural Syst. I Rehabil. Eng. 3(1), 112–116 (1995)

    Article  Google Scholar 

  36. J.D. Techer, S. Bernard, Y. Bertrand G. Cathebras, D. Guiraud. New implantable stimulator for the FES of paralyzed muscles, in Proceedings of 30th European Solid-State Circuits Conference (ESSCIRC04), pp. 455–458 (2004)

    Google Scholar 

  37. K. Chen, Z. Yang, L. Hoang, An integrated 256-channel epiretinal prosthesis. IEEE J. Solid State Circuits 45(9), 1946–1956 (2010)

    Article  Google Scholar 

  38. K. Song, H. Lee, S. Hong. A sub-10 nA DC-balanced adaptive stimulator IC with multi-modal sensor for compact. IEEE Trans. Circuits Syst. 6(6), 533–541 (2012)

    Article  Google Scholar 

  39. M. Monge, M. Raj, M. Honarvar-nazari, H. Chang, Y. Zhao, J. Weiland M. Humayun, Y. Tai, A. Emami-neyestanak, A fully intraocular 0.0169 mm 2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm CMOS. ISSCC Digest of Technical Papers, Feb 2013, pp. 296–298

    Google Scholar 

  40. K. Sooksood, T. Stieglitz, M. Ortmanns, An active approach for charge balancing in functional electrical stimulation. IEEE Trans. Biomed. Circuits Syst. 4(3), 162–170 (2010)

    Article  Google Scholar 

  41. M. Ortmanns, A. Rocke, M. Gehrke, H.J. Tiedtke, A 232-channel epiretinal stimulator ASIC. IEEE J. Solid State Circuits 42(12), 2946–2959 (2007)

    Article  Google Scholar 

  42. E. Noorsal, K. Sooksood, H. Xu, A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. J. Solid State Circuits 47, 244–256 (2012)

    Article  Google Scholar 

  43. R.J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd edn. (IEEE Press, New York, 2010)

    Book  Google Scholar 

  44. S. Kelly et al., A power-efficient voltage-based neural tissue stimulator with energy recovery, ISSCC Digest of Technical Papers vol. 26(2), (2004), pp. 579–588

    Google Scholar 

  45. J. Vidal, M. Ghovanloo, Towards a switched-capacitor based stimulator for efficient deep-brain stimulation, in Conference on Proceedings of IEEE Engineering in Medicine and Biology Society (2010)

    Google Scholar 

  46. L. Lapicque, Recherches, Quantitatives sur l’excitation electrique des nerfs traites comme une polarization. J. Physiol. (Paris) 9, 622–635 (1907)

    Google Scholar 

  47. M. Ghovanloo et al., A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators. IEEE Trans. Biomed. Eng. 52, 97–105 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, X., Van der Spiegel, J. (2018). Neural Stimulator Design. In: Brain-Machine Interface. Springer, Cham. https://doi.org/10.1007/978-3-319-67940-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67940-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67939-6

  • Online ISBN: 978-3-319-67940-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics