Skip to main content

Basin Entropy, a Measure of Final State Unpredictability and Its Application to the Chaotic Scattering of Cold Atoms

  • Chapter
  • First Online:
Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives

Abstract

Basins of attraction take its name from hydrology, and in dynamical systems they refer to the set of initial conditions that lead to a particular final state. When different final states are possible, the predictability of the system depends on the structure of these basins. We introduce the concept of basin entropy, that aims to quantify the final state unpredictability associated to the basins. Using several paradigmatic examples from nonlinear dynamics, we dissect the meaning of this new quantity and suggest some useful applications such as the basin entropy parameter set. Then, we explain how it is possible to apply this concept to experiments with cold atoms. Previous works pointed out that chaotic dynamics could be at the heart of some interesting regimes found in the scattering of cold atoms. Here, we detail how one of the hallmarks of chaos, the appearance of fractal structures in phase space, can be detected directly from experimental measurements thanks to the basin entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work we have normalized the region of the phase space, so that the values of the scaling box size \(\varepsilon \) in the plots are the inverse of the number of pixels used as a grid.

References

  1. Nusse, H.E., Yorke, J.A.: Science 271, 1376 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  2. Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Rev. Mod. Phys. 81, 333 (2009)

    Article  ADS  Google Scholar 

  3. Kolmogorov, A.N.: Doklady Russ. Acad. Sci. 119, 861 (1959)

    Google Scholar 

  4. Sinai, Y.G.: Doklady Russ. Acad. Sci. 124, 754 (1959)

    Google Scholar 

  5. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Trans. Am. Math. Soc. 114, 309 (1965)

    Article  Google Scholar 

  6. Hunt, B.R., Ott, E.: Chaos 25, 097618 (2015)

    Article  ADS  Google Scholar 

  7. Grebogi, C., McDonald, S.W., Ott, E., Yorke, J.A.: Phys. Lett. A 99, 415 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. Grebogi, C., Kostelich, E., Ott, E., Yorke, J.A.: Phys. Lett. A 118, 448 (1986)

    Article  ADS  Google Scholar 

  9. Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: Nat. Phys. 9, 89 (2013)

    Article  Google Scholar 

  10. Alexander, J., Yorke, J.A., You, Z., Kan, I.: Int. J. Bifurcat. Chaos 02, 795 (1992)

    Article  Google Scholar 

  11. Ott, E., Sommerer, J.C., Alexander, J.C., Kan, I., Yorke, J.A.: Phys. Rev. Lett. 71, 4134 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  12. Lai, Y.-C., Winslow, R.L.: Phys. Rev. Lett. 74, 5208 (1995)

    Article  ADS  Google Scholar 

  13. Daza, A., Wagemakers, A., Georgeot, B., Guéry-Odelin, D., Sanjuán, M.A.F.: Sci. Rep. 6, 31416 (2016)

    Article  ADS  Google Scholar 

  14. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  15. Kennedy, J., Yorke, J.A.: Phys. D 51, 213 (1991)

    Article  MathSciNet  Google Scholar 

  16. Daza, A., Wagemakers, A., Sanjuán, M.A.F., Yorke, J.A.: Sci. Rep. 5, 16579 (2015)

    Article  ADS  Google Scholar 

  17. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Phys. Rev. E 64, 066208 (2001)

    Article  ADS  Google Scholar 

  18. Hnon, M., Heiles, C.: Astron. J. 69, 73 (1964)

    Article  ADS  Google Scholar 

  19. Blesa, F., Seoane, J.M., Barrio, R., Sanjun, M.A.F.: Int. J. Bifurcat. Chaos 22, 1230010 (2012)

    Article  Google Scholar 

  20. Epureanu, B., Greenside, H.: SIAM Rev. 40, 102 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  21. Sanjun, M.A.F.: Phys. Rev. E 58, 4377 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  22. Cassettari, D., Hessmo, B., Folman, R., Maier, T., Schmiedmayer, J.: Phys. Rev. Lett. 85, 5483 (2000)

    Article  ADS  Google Scholar 

  23. Renn, M.J., Montgomery, D., Vdovin, O., Anderson, D.Z., Wieman, C.E., Cornell, E.A.: Phys. Rev. Lett. 75, 3253 (1995)

    Article  ADS  Google Scholar 

  24. Müller, D., Cornell, E.A., Prevedelli, M., Schwindt, P.D.D., Wang, Y.-J., Anderson, D.Z.: Phys. Rev. A 63, 041602 (2001)

    Article  ADS  Google Scholar 

  25. Houde, O., Kadio, D., Pruvost, L.: Phys. Rev. Lett. 85, 5543 (2000)

    Article  ADS  Google Scholar 

  26. Dumke, R., Volk, M., Müther, T., Buchkremer, F.B.J., Birkl, G., Ertmer, W.: Phys. Rev. Lett. 89, 097903 (2002)

    Article  ADS  Google Scholar 

  27. Gattobigio, G.L., Couvert, A., Georgeot, B., Guéry-Odelin, D.: Phys. Rev. Lett. 107, 254104 (2011)

    Article  ADS  Google Scholar 

  28. Gattobigio, G.L., Couvert, A., Reinaudi, G., Georgeot, B., Guéry-Odelin, D.: Phys. Rev. Lett. 109, 030403 (2012)

    Article  ADS  Google Scholar 

  29. Torrontegui, E., Echanobe, J., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Phys. Rev. A 82, 043420 (2010)

    Article  ADS  Google Scholar 

  30. Daza, A., Georgeot, B., Guéry-Odelin, D., Wagemakers, A.A., Sanjuán, M.A.F.: Phys. Rev. A 95, 013629 (2017)

    Google Scholar 

  31. Aguirre, J., Sanjuán, M.A.F.: Phys. Rev. E 67, 056201 (2003)

    Google Scholar 

  32. Lai, Y.C., Tél, T.: Transient Chaos. Springer, New York (2011)

    Google Scholar 

  33. Seoane, J.M., Sanjuán, M.A.F., Lai, Y.C.: Phys. Rev. E 76, 016208 (2007)

    Google Scholar 

  34. Seoane, J.M., Huang, L., Sanjuán, M.A.F., Lai, Y.C.: Phys. Rev. E 79, 047202 (2009)

    Google Scholar 

  35. Motter, A.E., Lai, Y.C.: Phys. Rev. E 65, 015205 (2001)

    Google Scholar 

  36. Seaman, B.T., Krämer, M., Anderson, D.Z., Holland, M.J.: Phys. Rev. A 75, 023615 (2007); Ryu, C., Boshier, M.G.: New J. Phys. 17, 092002 (2015); Caliga, S.C., Straatsma, C.J.E., Anderson, D.Z.: New J. Phys. 18, 025010 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness under Project No. FIS2013-40653-P and by the Spanish State Research Agency (AEI) and the European Regional Development Fund (FEDER) under Project No. FIS2016-76883-P. MAFS acknowledges the jointly sponsored financial support by the Fulbright Program and the Spanish Ministry of Education (Program No. FMECD-ST-2016). Financial support from the Programme Investissements d’Avenir under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvar Daza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daza, A., Wagemakers, A., Georgeot, B., Guéry-Odelin, D., Sanjuán, M.A.F. (2018). Basin Entropy, a Measure of Final State Unpredictability and Its Application to the Chaotic Scattering of Cold Atoms. In: Edelman, M., Macau, E., Sanjuan, M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-68109-2_2

Download citation

Publish with us

Policies and ethics