Skip to main content

Maximum Resilience of Artificial Neural Networks

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10482))

Abstract

The deployment of Artificial Neural Networks (ANNs) in safety-critical applications poses a number of new verification and certification challenges. In particular, for ANN-enabled self-driving vehicles it is important to establish properties about the resilience of ANNs to noisy or even maliciously manipulated sensory input. We are addressing these challenges by defining resilience properties of ANN-based classifiers as the maximum amount of input or sensor perturbation which is still tolerated. This problem of computing maximum perturbation bounds for ANNs is then reduced to solving mixed integer optimization problems (MIP). A number of MIP encoding heuristics are developed for drastically reducing MIP-solver runtimes, and using parallelization of MIP-solvers results in an almost linear speed-up in the number (up to a certain limit) of computing cores in our experiments. We demonstrate the effectiveness and scalability of our approach by means of computing maximum resilience bounds for a number of ANN benchmark sets ranging from typical image recognition scenarios to the autonomous maneuvering of robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

  2. 2.

    For clarity, we usually omit the dependency of \(\varPhi _m\) from \(\alpha \).

  3. 3.

    http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html.

  4. 4.

    http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html.

  5. 5.

    http://selfdrivingcars.mit.edu/deeptrafficjs/.

References

  1. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.-T.: Learning from Data, vol. 4. AMLBook, New York (2012)

    Google Scholar 

  2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in Ai safety. arXiv preprint arXiv:1606.06565 (2016)

  3. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. CoRR, abs/1605.07262 (2016)

    Google Scholar 

  4. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ-an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_14

    Google Scholar 

  5. Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., Engstrom, E.: Certification considerations for adaptive systems. In ICUAS, pp. 270–279. IEEE (2015)

    Google Scholar 

  6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In POPL, pp. 238–252. ACM (1977)

    Google Scholar 

  7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  8. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3(3), 227–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. CoRR, abs/1610.06940 (2016)

    Google Scholar 

  10. Karpathy, A.: ConvNetJS: deep learning in your browser (2014). URL http://cs.stanford.edu/people/karpathy/convnetjs

  11. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. CoRR, abs/1702.01135 (2017)

    Google Scholar 

  12. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  13. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits (1998)

    Google Scholar 

  14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  15. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In CPVR, pp. 427–436 (2015)

    Google Scholar 

  16. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against deep learning systems using adversarial examples. arXiv preprint arXiv:1602.02697 (2016)

  17. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: Oakland, pp. 582–597. IEEE (2016)

    Google Scholar 

  18. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6_24

    Chapter  Google Scholar 

  19. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI Commun. 25(2), 117–135 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Rajan, S., Wang, S., Inkol, R., Joyal, A.: Efficient approximations for the arctangent function. IEEE Signal Process. Mag. 23(3), 108–111 (2006)

    Article  Google Scholar 

  21. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of artificial neural networks. In: MBMV, pp. 30–40 (2015)

    Google Scholar 

  22. Ukil, A., Shah, V.H., Deck, B.: Fast computation of arctangent functions for embedded applications: a comparative analysis. In ISIE, pp. 1206–1211. IEEE (2011)

    Google Scholar 

  23. Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Computational experience with a software framework for parallel integer programming. INFORMS J. Comput. 21(3), 383–397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Hong Cheng or Georg Nührenberg .

Editor information

Editors and Affiliations

Appendix

Appendix

Proposition 1

iff constraints (2a) to (4b) hold.

First we establish a lemma to assist the proof.

Lemma 1

.

Proof

(\(\Rightarrow \)) Assume \(b^{(l)}_i=1\), then (3a) holds trivially and (3b) implies \(\textsf {im}^{(l)}_i\ge 0\).

(\(\Leftarrow \)) Assume \(\textsf {im}^{(l)}_i \ge 0\), then (3b) holds trivially and (3a) only holds if \(b^{(l)}_i=1\).

Proof

(Proposition 1).

First we rewrite the condition \(x^{(l)}_i = \textsf {max} (0, \textsf {im}^{(l)}_i)\) to allow further processing.

figure b

(\(\Rightarrow \)) If \((b^{(l)}_i = 1 \Rightarrow x^{(l)}_i = \textsf {im}^{(l)}_i) \wedge (b^{(l)}_i = 0 \Rightarrow x^{(l)}_i = 0 )\) holds, as \(b^{(l)}_i\) is a \(0-1\) integer variable, we consider both cases:

  • (case \(b^{(l)}_i = 1\) ) From the left clause we derive \(x^{(l)}_i = \textsf {im}^{(l)}_i\). From Lemma 1 we have \(\textsf {im}^{(l)}_i\ge 0\). By injecting \(b^{(l)}_i = 1\), \(x^{(l)}_i = \textsf {im}^{(l)}_i\), and \(\textsf {im}^{(l)}_i\ge 0\) to constraints (2a) to (4b), all constraints hold due to very large \(M^{(l)}_i\).

  • (case \(b^{(l)}_i = 0\) ) From the right clause we derive \(x^{(l)}_i = 0\). From Lemma 1 we have \(\textsf {im}^{(l)}_i < 0\). By injecting \(b^{(l)}_i = 0\), \(x^{(l)}_i = 0\), and \(\textsf {im}^{(l)}_i < 0\) to constraints (2a) to (4b), all constraints hold due to very large \(M^{(l)}_i\).

(\(\Leftarrow \)) If all constraints in (2a) to (4b) hold, we do case split to consider cases \(b^{(l)}_i = 0\) and \(b^{(l)}_i = 1\), and how they make \((b^{(l)}_i = 1 \Rightarrow x^{(l)}_i = \textsf {im}^{(l)}_i) \wedge (b^{(l)}_i = 0 \Rightarrow x^{(l)}_i = 0 )\) hold.

  • (case \(b^{(l)}_i = 1\) ) From (2b) and (4a) we know that \(x^{(l)}_i =\textsf {im}^{(l)}_i\).

  • (case \(b^{(l)}_i = 0\) ) From (2a) and (4b) we know that \(x^{(l)}_i = 0\).

In both cases, \((b^{(l)}_i = 1 \Rightarrow x^{(l)}_i = \textsf {im}^{(l)}_i) \wedge (b^{(l)}_i = 0 \Rightarrow x^{(l)}_i = 0 )\) holds.

Proposition 2

Given a feed-forward ANN with softmax output layer and a constant \(\alpha > 0\), then for all \(i, j\in \{1, \ldots , d^{(L)}\}\):

$$ x^{(L)}_{i_1} \ge \alpha \, x^{(L)}_{i_2} \Leftrightarrow x^{(L-1)}_{i_1} \ge \ln (\alpha ) + x^{(L-1)}_{i_2}.$$

Proof

figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cheng, CH., Nührenberg, G., Ruess, H. (2017). Maximum Resilience of Artificial Neural Networks. In: D'Souza, D., Narayan Kumar, K. (eds) Automated Technology for Verification and Analysis. ATVA 2017. Lecture Notes in Computer Science(), vol 10482. Springer, Cham. https://doi.org/10.1007/978-3-319-68167-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68167-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68166-5

  • Online ISBN: 978-3-319-68167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics