Skip to main content

Endocrine Disruptors as Obesogens

  • Chapter
  • First Online:
Pediatric Obesity

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Substantial effort has been devoted to explaining secular trends in childhood obesity and metabolic risks to unhealthy diet and physical activity. While some studies have suggested these factors may play a role in the obesity epidemic, even these studies have only been able to conclude that these factors have a moderate role. Given that a single-generation transformation in the human genome is even more unlikely to have transformed susceptibility to excess weight gain in early life, we are left with the reality that environmental influences represent important risks for obesity and dysmetabolism. In contrast to diet and physical activity, which can require intensive attention, effort and costs to modify through behavioral and other interventions, government action can fundamentally transform the environment and prevent disease and disability. The costs of regulations to limit environmental obesogens can also be much lower than the benefits to society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jeffery RW, Linde JA. Chapter 4: Evolving environmental factors in the obesity epidemic. In: Crawford D, Jeffery RW, editors. Obesity prevention and public health. New York: Oxford University Press; 2005.

    Google Scholar 

  2. Ford ES, Dietz WH. Trends in energy intake among adults in the United States: findings from NHANES. Am J Clin Nutr. 2013;97(4):848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nicklas TA, Elkasabany A, Srinivasan SR, Berenson G. Trends in nutrient intake of 10-year-old children over two decades (1973–1994): the Bogalusa Heart Study. Am J Epidemiol. 2001;153(10):969–77.

    Article  CAS  PubMed  Google Scholar 

  4. Brown RE, Sharma AM, Ardern CI, Mirdamadi P, Mirdamadi P, Kuk JL. Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity. Obes Res Clin Pract. 2016;10(3):243–55.

    Article  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention. Youth risk behavior surveillance-United States. MMWR. 2003;53(SS-2):21–4. http://www.cdc.gov/pcd/issues/2005/apr/04_0039.htm

    Google Scholar 

  6. Li S, Center for Human Nutrition DoIH, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA, Department of Preventive Medicine QUMS, Qingdao, Shandong Province, China, Treuth MS, Center for Human Nutrition DoIH, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA, Department of Physical Therapy UoMES, Princess Anne, MD, USA, et al. How active are American adolescents and have they become less active? Obes Rev. 2017;11(12):847–62.

    Article  Google Scholar 

  7. Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. 2006;20(9):2141–55.

    Article  PubMed  CAS  Google Scholar 

  8. Janesick A, Blumberg B. Obesogens, stem cells and the developmental programming of obesity. Int J Androl. 2012;35(3):437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Janesick A, Blumberg B. Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res C Embryo Today. 2011;93(1):34–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li X, Ycaza J, Blumberg B. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes. J Steroid Biochem Mol Biol. 2011;127(1–2):9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Janesick AS, Shioda T, Blumberg B. Transgenerational inheritance of prenatal obesogen exposure. Mol Cell Endocrinol. 2014;398(1–2):31–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chamorro-Garcia R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ Health Perspect. 2013;121(3):359–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Grün F, Blumberg B. Minireview: the case for obesogens. Mol Endocrinol. 2009;23(8):1127–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Heindel JJ, Newbold R, Schug TT. Endocrine disruptors and obesity. Nat Rev Endocrinol. 2015;11(11):653–61.

    Article  CAS  PubMed  Google Scholar 

  15. Stel J, Legler J. The role of epigenetics in the latent effects of early life exposure to obesogenic endocrine disrupting chemicals. Endocrinology. 2015;156(10):3466–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gray LE Jr, Wilson VS, Stoker T, Lambright C, Furr J, Noriega N, et al. Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. Int J Androl. 2006;29(1):96–104; discussion 5–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sathyanarayana S. Phthalates and children's health. Curr Probl Pediatr Adolesc Health Care. 2008;38(2):34–49.

    Article  PubMed  Google Scholar 

  18. Schettler T. Human exposure to phthalates via consumer products. Int J Androl. 2006;29(1):134–9.

    Article  CAS  PubMed  Google Scholar 

  19. Fromme H, Gruber L, Schlummer M, Wolz G, Böhmer S, Angerer J, et al. Intake of phthalates and di(2-ethylhexyl)adipate: results of the integrated exposure assessment survey based on duplicate diet samples and biomonitoring data. Environ Int. 2007;33(8):1012–20.

    Article  CAS  PubMed  Google Scholar 

  20. Desvergne B, Feige JN, Casals-Casas C. PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol. 2009;304(1–2):43–8.

    Article  CAS  PubMed  Google Scholar 

  21. Jepsen KF, Abildtrup A, Larsen ST. Monophthalates promote IL-6 and IL-8 production in the human epithelial cell line A549. Toxicol In Vitro. 2004;18(3):265–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gourlay T, Samartzis I, Stefanou D, Taylor K. Inflammatory response of rat and human neutrophils exposed to Di-(2-ethyl-hexyl)-phthalate-plasticized polyvinyl chloride. Artif Organs. 2003;27(3):256–60.

    Article  CAS  PubMed  Google Scholar 

  23. Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9.

    Article  CAS  PubMed  Google Scholar 

  24. Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology. 2006;13(3):129–42.

    Article  CAS  PubMed  Google Scholar 

  25. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91(3, Supplement):7–11.

    Article  Google Scholar 

  26. de Champlain J, Wu R, Girouard H, Karas M, EL Midaoui A, Laplante MA, et al. Oxidative stress in hypertension. Clin Exp Hypertens. 2004;26(7–8):593–601.

    Article  PubMed  CAS  Google Scholar 

  27. Posnack NG, Lee NH, Brown R, Sarvazyan N. Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology. 2011;279(1–3):54–64.

    Article  CAS  PubMed  Google Scholar 

  28. Posnack NG, Swift LM, Kay MW, Lee NH, Sarvazyan N. Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environ Health Perspect. 2012;120(9):1243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hatch E, Nelson JW, Qureshi MM, Weinberg J, Moore LL, Singer M, et al. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-ional study of NHANES data, 1999–2002. Environ Health. 2008;7:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Teitelbaum SL, Mervish N, Moshier EL, Vangeepuram N, Galvez MP, Calafat AM, et al. Associations between phthalate metabolite urinary concentrations and body size measures in New York City children. Environ Res. 2012;112:186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maresca MM, Hoepner LA, Hassoun A, Oberfield SE, Mooney SJ, Calafat AM, et al. Prenatal exposure to phthalates and childhood body size in an urban cohort. Environ Health Perspect. 2016;124(4):514–20.

    PubMed  Google Scholar 

  32. de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M. First year growth in relation to prenatal exposure to endocrine disruptors — a Dutch Prospective Cohort Study. Int J Environ Res Public Health. 2014;11:7001–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Valvi D, Casas M, Romaguera D, Monfort N, Ventura R, Martinez D, et al. Prenatal phthalate exposure and childhood growth and blood pressure: evidence from the Spanish INMA-Sabadell Birth Cohort Study. Environ Health Perspect. 2015 Oct;123(10):1022–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect. 2002;110(5):515–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mes J, Coffin DE, Campbell DS. Di-n-butyl-and Di-2-ethylhexyl phthalate in human adipose tissue. Bull Environ Contam Toxicol. 1974;12(6):721–5.

    Article  CAS  PubMed  Google Scholar 

  36. Schecter A, Malik N, Haffner D, Smith S, Harris TR, Paepke O, et al. Bisphenol A (BPA) in U.S. food. Environ Sci Technol. 2010;44(24):9425–30.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environ Res. 2007;103(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  38. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature. 1999;401(6755):763–4.

    Article  CAS  PubMed  Google Scholar 

  39. Mauvais-Jarvis F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab. 2011;22(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  40. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008;116(12):1642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Masuno H, Kidani T, Sekiya K, Sakayama K, Shiosaka T, Yamamoto H, et al. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res. 2002;43(5):676–84.

    CAS  PubMed  Google Scholar 

  42. Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect. 2005;113(8):969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moon MK, Jeong IK, Jung Oh T, Ahn HY, Kim HH, Park YJ, et al. Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. J Endocrinol. 2015;226(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  44. Sakurai K, Kawazuma M, Adachi T, Harigaya T, Saito Y, Hashimoto N, et al. Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol. 2004;141(2):209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trasande L, Attina TM, Blustein J. Association between urinary bisphenol a concentration and obesity prevalence in children and adolescents. JAMA. 2012;11:1113–21.

    Article  Google Scholar 

  46. Valvi D, Casas M, Mendez MA, Ballesteros-Gomez A, Luque N, Rubio S, et al. Prenatal bisphenol a urine concentrations and early rapid growth and overweight risk in the offspring. Epidemiology. 2013;24(6):791–9.

    Article  PubMed  Google Scholar 

  47. Braun JM, Lanphear BP, Calafat AM, Deria S, Khoury J, Howe CJ, et al. Early-life bisphenol a exposure and child body mass index: a prospective cohort study. Environ Health Perspect. 2014;122(11):1239–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Harley KG, Schall RA, Chevrier J, Tyler K, Aguirre H, Bradman A. Prenatal and postnatal bisphenol a exposure and body mass index in childhood in the CHAMACOS Cohort. Environ Health Perspect. 2013 (February 15 2013 advance online publication).

    Google Scholar 

  49. Stahlhut RW, Welshons WV, Swan SH. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 2009;117(5):784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahalingaiah S, Meeker JD, Pearson KR, Calafat AM, Ye X, Petrozza J, et al. Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ Health Perspect. 2008;116(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  51. Nepomnaschy PA, Baird DD, Weinberg CR, Hoppin JA, Longnecker MP, Wilcox AJ. Within-person variability in urinary bisphenol A concentrations: measurements from specimens after long-term frozen storage. Environ Res. 2009;109(6):734–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res. 2008;106(2):257–69.

    Article  CAS  PubMed  Google Scholar 

  53. Carroll RJ. Measurement error in epidemiologic studies. In: Armitage P, Colton T, editors. Encyclopedia of biostatistics. New York: John Wiley &Sons; 1998.

    Google Scholar 

  54. Fleiss JL, Shrout PE. The effects of measurement errors on some multivariate procedures. Am J Public Health. 1977;67(12):1188–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fuller WA. Measurement error models. New York: Wiley; 1987.

    Book  Google Scholar 

  56. Barker DJ, Godfrey KM, Osmond C, Bull A. The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr Perinat Epidemiol. 1992;6(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  57. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353(17):1802–9.

    Article  CAS  PubMed  Google Scholar 

  58. Gardosi J, Mongelli M, Wilcox M, Chang A. An adjustable fetal weight standard. Ultrasound Obstet Gynecol. 1995;6(3):168–74.

    Article  CAS  PubMed  Google Scholar 

  59. Hadlock F, Harrist R, Sharman R, Deter R, Park S. Estimation of fetal weight with the use of the head, body and femur measurements-a prospective study. Am J Obstet Gynecol. 1985;151:333–7.

    Article  CAS  PubMed  Google Scholar 

  60. Lind L, Lind PM. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? J Intern Med. 2012;271(6):537–53.

    Article  CAS  PubMed  Google Scholar 

  61. United Nations Environment Programme (Stockholm Convention Secretariat). Stockholm convention on persistent organic pollutants. http://chm.pops.int/default.aspx.

  62. Ma W-L, Gao C, Bell EM, Druschel CM, Caggana M, Aldous KM, et al. Analysis of polychlorinated biphenyls and organochlorine pesticides in archived dried blood spots and its application to track temporal trends of environmental chemicals in newborns. Environ Res. 2014;133(0):204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilson VS, Blystone CR, Hotchkiss AK, Rider CV, Gray LE Jr. Diverse mechanisms of anti-androgen action: impact on male rat reproductive tract development. Int J Androl. 2008;31(2):178–87.

    Article  CAS  PubMed  Google Scholar 

  64. Shekhar PV, Werdell J, Basrur VS. Environmental estrogen stimulation of growth and estrogen receptor function in preneoplastic and cancerous human breast cell lines. J Natl Cancer Inst. 1997;89(23):1774–82.

    Article  CAS  PubMed  Google Scholar 

  65. Moreno-Aliaga MJ, Matsumura F. Effects of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (p,p’-DDT) on 3T3-L1 and 3T3-F442A adipocyte differentiation. Biochem Pharmacol. 2002;63(5):997–1007.

    Article  CAS  PubMed  Google Scholar 

  66. Xue J, Liu SV, Zartarian VG, Geller AM, Schultz BD. Analysis of NHANES measured blood PCBs in the general US population and application of SHEDS model to identify key exposure factors. J Expo Sci Environ Epidemiol. 2014;24(6):615–21.

    Article  CAS  PubMed  Google Scholar 

  67. Fernandez MP, Ikonomou MG, Courtenay SC, Wirgin II. Spatial variation in hepatic levels and patterns of PCBs and PCDD/Fs among young-of-the-year and adult Atlantic tomcod (Microgadus tomcod) in the Hudson River estuary. Environ Sci Technol. 2004;38(4):976–83.

    Article  CAS  PubMed  Google Scholar 

  68. Palmer PM, Wilson LR, Casey AC, Wagner RE. Occurrence of PCBs in raw and finished drinking water at seven public water systems along the Hudson River. Environ Monit Assess. 2011;175(1–4):487–99.

    Article  CAS  PubMed  Google Scholar 

  69. Herbstman JB, Sjödin A, Apelberg BJ, Witter FR, Halden RU, Patterson DG Jr, et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ Health Perspect. 2008;116(10):1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Korashy HM, El-Kadi AOS. The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab Rev. 2006;38(3):411–50.

    Article  CAS  PubMed  Google Scholar 

  71. Zeliger HI. Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip Toxicol. 2013;6(2):55–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE. Human internal and external exposure to PBDEs--a review of levels and sources. Int J Hyg Environ Health. 2009;212(2):109–34.

    Article  CAS  PubMed  Google Scholar 

  73. Bastos Sales L, Kamstra JH, Cenijn PH, van Rijt LS, Hamers T, Legler J. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation. Toxicol In Vitro. 2013;27(6):1634–43.

    Article  CAS  PubMed  Google Scholar 

  74. Shah A, Coburn CG, Watson-Siriboe A, Whitley R, Shahidzadeh A, Gillard ER, et al. Altered cardiovascular reactivity and osmoregulation during hyperosmotic stress in adult rats developmentally exposed to polybrominated diphenyl ethers (PBDEs). Toxicol Appl Pharmacol. 2011;256(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  75. Albina ML, Alonso V, Linares V, Bellés M, Sirvent JJ, Domingo JL, et al. Effects of exposure to BDE-99 on oxidative status of liver and kidney in adult rats. Toxicology. 2010;271(1–2):51–6.

    Article  CAS  PubMed  Google Scholar 

  76. Coburn CG, Curras-Collazo MC, Kodavanti PR. Polybrominated diphenyl ethers and ortho-substituted polychlorinated biphenyls as neuroendocrine disruptors of vasopressin release: effects during physiological activation in vitro and structure-activity relationships. Toxicol Sci. 2007;98(1):178–86.

    Article  CAS  PubMed  Google Scholar 

  77. Landrigan PJ, Etzel RA. Textbook of children's environmental health, vol. xviii. New York: Oxford University Press; 2014. p. 588.

    Google Scholar 

  78. US Environmental Protection Agency. Long-chain perfluorinated chemicals (PFCs) action plan. 2009. http://www.epa.gov/opptintr/existingchemicals/pubs/pfcs_action_plan1230_09.pdf.

  79. Watkins AM, Wood CR, Lin MT, Abbott BD. The effects of perfluorinated chemicals on adipocyte differentiation in vitro. Mol Cell Endocrinol. 2015;400:90–101.

    Article  CAS  PubMed  Google Scholar 

  80. Glynn A, Berger U, Bignert A, Ullah S, Aune M, Lignell S, et al. Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996–2010. Environ Sci Technol. 2012;46(16):9071–9.

    Article  CAS  PubMed  Google Scholar 

  81. Hines EP, White SS, Stanko JP, Gibbs-Flournoy EA, Lau C, Fenton SE. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: low doses induce elevated serum leptin and insulin, and overweight in mid-life. Mol Cell Endocrinol. 2009;304(1–2):97–105.

    Article  CAS  PubMed  Google Scholar 

  82. Qian Y, Ducatman A, Ward R, Leonard S, Bukowski V, Lan Guo N, et al. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J Toxic Environ Health A. 2010;73(12):819–36.

    Article  CAS  Google Scholar 

  83. Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA. Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Ren Physiol. 2003;285(2):F191–F8.

    Article  CAS  Google Scholar 

  84. Govarts E, Nieuwenhuijsen M, Schoeters G, Ballester F, Bloemen K, de Boer M, et al. Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts. Environ Health Perspect. 2012;120(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  85. Iszatt N, Stigum H, Verner MA, White RA, Govarts E, Murinova LP, et al. Prenatal and postnatal exposure to persistent organic pollutants and infant growth: a pooled analysis of seven European birth cohorts. Environ Health Perspect. 2015;123(7):730–6.

    PubMed  PubMed Central  Google Scholar 

  86. Cupul-Uicab LA, Klebanoff MA, Brock JW, Longnecker MP. Prenatal exposure to persistent organochlorines and childhood obesity in the US collaborative perinatal project. Environ Health Perspect. 2013;121(9):1103–9.

    PubMed  PubMed Central  Google Scholar 

  87. Warner M, Wesselink A, Harley KG, Bradman A, Kogut K, Eskenazi B. Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the CHAMACOS study cohort. Am J Epidemiol. 2014;179(11):1312–22.

    Article  PubMed  PubMed Central  Google Scholar 

  88. La Merrill M, Cirillo PM, Terry MB, Krigbaum NY, Flom JD, Cohn BA. Prenatal exposure to the pesticide DDT and hypertension diagnosed in women before age 50: a longitudinal birth cohort study. Environ Health Perspect. 2013;121(5):594–9.

    PubMed  PubMed Central  Google Scholar 

  89. Gump BB, Yun S, Kannan K. Polybrominated diphenyl ether (PBDE) exposure in children: possible associations with cardiovascular and psychological functions. Environ Res. 2014;132:244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Erkin-Cakmak A, Harley KG, Chevrier J, Bradman A, Kogut K, Huen K, et al. In utero and childhood polybrominated diphenyl ether exposures and body mass at age 7 years: the CHAMACOS study. Environ Health Perspect. 2015;123(6):636–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Holtcamp W. Pregnancy-induced hypertension “probably linked” to PFOA contamination. Environ Health Perspect. 2012;120(2):a59.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wilson BJ, Watson MS, Prescott GJ, Sunderland S, Campbell DM, Hannaford P, et al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ. 2003;326(7394):845.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Leffert LR, Clancy CR, Bateman BT, Bryant AS, Kuklina EV. Hypertensive disorders and pregnancy-related stroke: frequency, trends, risk factors, and outcomes. Obstet Gynecol. 2015 Jan;125(1):124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, et al. Perfluorinated compounds in relation to birth weight in the Norwegian Mother and Child Cohort Study. Am J Epidemiol. 2012;175(12):1209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J. Prenatal exposures to perfluorinated chemicals and anthropometric measures in infancy. Am J Epidemiol. 2010;172(11):1230–7.

    Article  PubMed  Google Scholar 

  96. Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J. Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age. Am J Epidemiol. 2013;178(6):921–7.

    Article  PubMed  Google Scholar 

  97. Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ Health Perspect. 2012;120(5):668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann N Y Acad Sci. 2006;1092:138–47.

    Article  CAS  PubMed  Google Scholar 

  99. Hult M, Tornhammar P, Ueda P, Chima C, Bonamy AK, Ozumba B, et al. Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PLoS One. 2010;5(10):e13582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Barry V, Darrow LA, Klein M, Winquist A, Steenland K. Early life perfluorooctanoic acid (PFOA) exposure and overweight and obesity risk in adulthood in a community with elevated exposure. Environ Res. 2014;132:62–9.

    Article  CAS  PubMed  Google Scholar 

  101. Watkins DJ, Josson J, Elston B, Bartell SM, Shin HM, Vieira VM, et al. Exposure to perfluoroalkyl acids and markers of kidney function among children and adolescents living near a chemical plant. Environ Health Perspect. 2013;121(5):625–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, et al. Reducing phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA Intervention Study. Environ Health Perspect. 2016 Oct;124(10):1600–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rudel RA, Gray JM, Engel CL, Rawsthorne TW, Dodson RE, Ackerman JM, et al. Food packaging and bisphenol A and Bis(2-Ethylhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect. 2011;119(7):914–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ax E, Lampa E, Lind L, Salihovic S, van Bavel B, Cederholm T, et al. Circulating levels of environmental contaminants are associated with dietary patterns in older adults. Environ Int. 2015;75:93–102.

    Article  CAS  PubMed  Google Scholar 

  105. Sjogren P, Montse R, Lampa E, Salihovic S, van Bavel B, Lind L, et al. Circulating levels of perfluoroalkyl substances are associated with dietary patterns—a cross ional study in elderly Swedish men and women. Environ Res. 2016;150:59–65.

    Article  CAS  PubMed  Google Scholar 

  106. US Food and Drug Administration. Update on bisphenol A for use in food contact applications. 2012. http://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm.

  107. Layton L. Alternatives to BPA containers not easy for U.S. foodmakers to find. Washington Post. 2010.

    Google Scholar 

  108. The Aluminum Association Inc. U.S. Aluminum Beverage Can Recycling. 2012. http://www.aluminum.org/Content/NavigationMenu/NewsStatistics/StatisticsReports/UsedBeverageCanRecyclingRate/UBC_Recycling_Rates_2010.pdf.

  109. Trasande L. Further limiting bisphenol a in food uses could provide health and economic benefits. Health Aff. 2014;33(2):316–23.

    Article  Google Scholar 

  110. Trasande L, Zoeller RT, Hass U, Kortenkamp A, Grandjean P, Myers JP, et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis. Andrology. 2016;4(4):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Attina TM, Hauser R, Sathyanarayana S, Hunt PA, Bourguignon JP, Myers JP, et al. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016;4(12):996–1003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Trasande MD, MPP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Trasande, L., Blumberg, B. (2018). Endocrine Disruptors as Obesogens. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics