Skip to main content

Cognitive and Psychomotor Performance

  • Chapter
  • First Online:
Sensory Motor and Behavioral Research in Space

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

During space flight, astronauts are exposed to a variety of stressors. Some of these stressors originate from the specific environmental conditions in space (e.g. microgravity, radiation). Others are more unspecific and originate from living and working as member of a small crew in a confined and isolated habitat (e.g. lack of privacy, social monotony). This chapter summarizes our current knowledge about the impact of these space flight-related stressors on cognitive and psychomotor performance of astronauts. It suggests that basic cognitive processes are highly resilient and remain as efficient in space as on Earth. Similarly also processes of spatial imagery and object recognition do not seem to be affected much by the altered conditions in space. In contrast, considerable performance decrements have consistently been observed in different psychomotor tasks. These decrements seem to be caused by microgravity-induced changes of sensorimotor processes, at least during a transient period of primary adaptation to space. The available evidence pointing to impairments of executive functions and higher cognitive processes in space is less conclusive at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basner M, Dinges DF, Mollicone DJ, Savelev I, Ecker AJ, Di Antonio A, Jones CW, Hyder EC, Kan K, Morukov BV, Sutton JP (2014) Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to Mars. PLoS One 9:e93298. https://doi.org/10.1371/journal.pone.0093298

    Article  PubMed  PubMed Central  Google Scholar 

  • Benke T, Koserenko O, Watson NV, Gerstenbrand F (1993) Space and cognition: the measurement of behavioral functions during a 6-day space mission. Aviat Space Environ Med 64:376–379

    CAS  PubMed  Google Scholar 

  • Berger M, Mescheriakov S, Molokanova E, Lechner-Steinleitner S, Seguer N, Kozlovskaya V (1997) Pointing arm movements in short- and long-term spaceflight. Aviat Space Environ Med 68:781–787

    CAS  PubMed  Google Scholar 

  • Bishop SL (2011) From Earth analogs to space: getting there from here. In: Vakoch TA (ed) Psychology of space exploration. Contemporary research in historical perspective, NASA SP-2011-4411. NASA, Washington, pp 47–78

    Google Scholar 

  • Bock O (1994) Joint position sense in simulated changed-gravity environments. Aviat Space Environ Med 65:621–626

    CAS  PubMed  Google Scholar 

  • Bock O (1998) Problems of sensorimotor coordination in weightlessness. Brain Res Rev 28:155–160

    Article  CAS  PubMed  Google Scholar 

  • Bock O, Arnold KE, Cheung BSK (1996) Performance of a simple aiming task in hypergravity: II. Detailed response characteristics. Aviat Space Environ Med 67:133–138

    CAS  PubMed  Google Scholar 

  • Bock O, Fowler B, Comfort D (2001) Human sensorimotor coordination during spaceflight: an analysis of pointing and tracking responses during the “Neurolab” space shuttle mission. Aviat Space Environ Med 72:877–883

    CAS  PubMed  Google Scholar 

  • Bock O, Weigelt C, Bloomberg JJ (2010) Cognitive demand of human sensorimotor performance during an extended space-mission: a dual-task study. Aviat Space Environ Med 81:819–824

    Article  PubMed  Google Scholar 

  • Clement G (2011) Fundamentals of space medicine, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Clement G, Reschke MF (2008) Neuroscience in space. Springer, Heidelberg

    Book  Google Scholar 

  • Clément G, Berthoz A, Lestienne F (1987) Adaptive changes in perception of body orientation and mental image rotation in microgravity. Aviat Space Environ Med 58:A159–A163

    PubMed  Google Scholar 

  • Cohen MM (2000) Perception of facial features and face-to-face communications in space. Aviat Space Environ Med 71:A51–A57

    CAS  PubMed  Google Scholar 

  • de Schonen S, Leone G, Lipshits M (1998) The face inversion effect in microgravity: is gravity used as a spatial reference for complex object recognition? Acta Astronaut 42:287–301

    Article  PubMed  Google Scholar 

  • Diamond A (2014) Executive functions. Annu Rev Psychol 64:135–168

    Article  Google Scholar 

  • Eddy D, Schiflett S, Schlegel R, Shehab R (1998) Cognitive performance aboard the life and microgravity spacelab. Acta Astronaut 43:193–210

    Article  CAS  PubMed  Google Scholar 

  • Ellis SR (2000) Collision in space. Ergon Des 8:4–9

    CAS  PubMed  Google Scholar 

  • Fowler B, Bock O, Comfort D (2000) Is dual-task performance necessarily impaired in space? Hum Factors 42:318–326

    Article  CAS  PubMed  Google Scholar 

  • Friederici AD, Levelt WJM (1990) Spatial reference in weightlessness: perceptual factors and mental representations. Percept Psychophys 47:253–266

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Mittelstaedt H (1998) Perception of spatial orientation in microgravity. Brain Res Rev 28:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hockey GRJ (1986) Changes in operator efficiency as a function of environmental stress, fatigue, and circadian rhythms. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and performance. Vol II: Cognitive processes and performance. Wiley, New York, pp 44-1–44-49

    Google Scholar 

  • Jüngling S, Bock O (1999) Sensorimotor adaptation of humans to the space environment. In: Proceedings of the 2nd European symposium on the utilisation of the International Space Station (ESA SP-433). ESA, Noordwijk, pp 527–531

    Google Scholar 

  • Kanas N, Manzey D (2008) Space psychology and psychiatry. Springer, Heidelberg

    Google Scholar 

  • Kelly TH, Hienz RD, Zarcone TJ, Wurster RM, Brady JV (2005) Crewmember performance before, during, and after spaceflight. J Exp Anal Behav 84:227–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Leone G (1998) The effect of gravity on human recognition of disoriented objects. Brain Res Rev 28:203–214

    Article  CAS  PubMed  Google Scholar 

  • Leone G, Lipshits M, Gurfinkel V, Berthoz A (1995a) Influence of graviceptive cues at different levels of visual information processing: the effects of prolonged weightlessness. Acta Astronaut 36:743–751

    Article  CAS  PubMed  Google Scholar 

  • Leone G, Lipshits M, Gurfinkel V, Berthoz A (1995b) Is there an effect of weightlessness on mental rotation of three-dimensional objects? Cogn Brain Res 2:255–267

    Article  CAS  Google Scholar 

  • Limardo JG, Allen CS, Danielson RW (2015) Status: crew member noise exposures on the International Space Station. In: Proceedings of the 45th international conference on environmental systems, 12–16 July 2015, Bellevue, Washington. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150011048.pdf. Last accessed 06 Nov 2016

  • Manzey D (2000) Monitoring of mental performance during spaceflight. Aviat Space Environ Med 71:A69–A75

    CAS  PubMed  Google Scholar 

  • Manzey D, Lorenz B (1998) Mental performance during short-term and long-term spaceflight. Brain Res Rev 28:215–221

    Article  CAS  PubMed  Google Scholar 

  • Manzey D, Lorenz B, Schiewe A, Finell G, Thiele G (1993) Behavioral aspects of human adaptation to space: analyses of cognitive and psychomotor performance during an 8-days space mission. Clin Investig 71:725–731

    Article  CAS  PubMed  Google Scholar 

  • Manzey D, Lorenz B, Schiewe A, Finell G, Thiele G (1995) Dual-task performance in space: results from a single-case study during a short-term space mission. Hum Factors 37:667–681

    Article  CAS  PubMed  Google Scholar 

  • Manzey D, Lorenz B, Polyakov VV (1998) Mental performance in extreme environments: results from a performance monitoring study during a 438-day space mission. Ergonomics 41:537–559

    Article  CAS  PubMed  Google Scholar 

  • Manzey D, Lorenz B, Heuer H, Sangals J (2000) Impairments of manual tracking performance in space: more converging evidence from a 20-day space mission. Ergonomics 43:589–609

    Article  CAS  PubMed  Google Scholar 

  • Monsell S (2003) Task switching. Trends Cogn Sci 7:134–140

    Article  PubMed  Google Scholar 

  • Morphew E, Balmer DV, Khoury GJ (2001) Human performance in space. Ergon Des 9:6–11

    Google Scholar 

  • Newberg AB (1994) Changes in the central nervous system and their clinical correlates during long-term space flight. Aviat Space Environ Med 65:562–572

    CAS  PubMed  Google Scholar 

  • Newman DJ, Lathan CE (1999) Memory processes and motor control in extreme environments. IEEE Trans Syst Man Cyber Part C Appl Rev 29:387–394

    Article  CAS  Google Scholar 

  • Oman CM (2007) Spatial orientation and navigation in microgravity. In: Mast F, Jancke L (eds) Spatial processing in navigation, imagery and perception. Springer, Heidelberg, pp 209–247

    Chapter  Google Scholar 

  • Pattyn N, Migeotte PF, Demaeseleer W, Kolinsky R, Morais J, Zizi M (2005) Investigating human cognitive performance during spaceflight. J Gravit Physiol 12:P39–P40

    Google Scholar 

  • Pozzo T, Papaxanthis C, Stapley P, Berthoz A (1998) The sensorimotor and cognitive integration of gravity. Brain Res Rev 28:92–101

    Article  CAS  PubMed  Google Scholar 

  • Ratino DA, Repperger DW, Goodyear C, Potor G, Rodriguez LE (1988) Quantification of reaction time and time perception during Space Shuttle operations. Aviat Space Environ Med 59:220–224

    CAS  PubMed  Google Scholar 

  • Sangals J, Heuer H, Manzey D, Lorenz B (1999) Changed visuomotor transformations during and after spaceflight. Exp Brain Res 129:378–390

    Article  CAS  PubMed  Google Scholar 

  • Schiflett S, Eddy D, Schlegel RE, French J, Shehab R (1995) Performance assessment workstation (PAWS). Unpublished final science report to NASA

    Google Scholar 

  • Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    Article  CAS  PubMed  Google Scholar 

  • Sternberg S (1966) High-speed scanning in human memory. Science 153:652–654

    Article  CAS  PubMed  Google Scholar 

  • Strangman GE et al (2014) Human cognitive performance in spaceflight and analog environments. Aviat Space Environ Med 85:1033–1048

    Article  PubMed  Google Scholar 

  • Suedfeld P, Steel GD (2000) The environmental psychology of capsule habitats. Annu Rev Psychol 51:227–253

    Article  CAS  PubMed  Google Scholar 

  • Watt DGD (1997) Pointing at memorized targets during prolonged microgravity. Aviat Space Environ Med 68:99–103

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Manzey .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Manzey, D. (2017). Cognitive and Psychomotor Performance. In: Sensory Motor and Behavioral Research in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-68201-3_3

Download citation

Publish with us

Policies and ethics