Skip to main content

The Categories of Quantum Information Hiding Protocol

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10602))

Included in the following conference series:

  • 1775 Accesses

Abstract

Quantum information hiding, which is a popular topic in quantum information, can be chosen as an alternative method for privacy protection. As the latest developments of classical information hiding in quantum scenario, quantum information hiding employs the effects of quantum information and quantum computation to achieve the target of information hiding by utilizing quantum states as the carriers of information transmission. Since it was first proposed in 2001, quantum information hiding has been developed very fast. In this paper, quantum information hiding protocols are divided into three categories, including quantum steganography, quantum covert channel and quantum watermarking, according to the application purpose. And then every class of the quantum information hiding protocols are described respectively. At the end of the paper, the new trends on the quantum information hiding research and the perspective of quantum information hiding research are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (2001)

    Google Scholar 

  2. Fu, Z.J., Ren, K., Shu, J.G., Sun, X.M., Huang, F.X.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27, 2546–2559 (2016)

    Article  Google Scholar 

  3. Qu, Z.G., Keeney, J., Robitzsch, S., Zaman, F., Wang, X.J.: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China Commun. 13, 108–116 (2016)

    Google Scholar 

  4. Xue, Y., Jiang, J.M., Zhao, B.P., Ma, T.H.: A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput. (2017) doi:10.1007/s00500-017-2547-1

  5. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86, 5807–5810 (2001)

    Article  Google Scholar 

  6. DiVincenzo, D.P., Hayden, P.A., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theor. 48, 580–599 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89, 097905 (2002)

    Article  Google Scholar 

  8. Guo, G.C., Guo, G.P.: Quantum data hiding with spontaneous parameter down-conversion. Phys. Rev. A 68, 044303 (2003)

    Article  Google Scholar 

  9. Hayden, P., Leung, D., Smith, G.: Multiparty data hiding of quantum information. Phys. Rev. A 71, 062339 (2005)

    Article  Google Scholar 

  10. Chattopadhyay, I., Sarkar, D.: Local indistinguishability and possibility of hiding cbits in activable bound entangled states. Phys. Lett. A 365, 273–277 (2007)

    Article  MATH  Google Scholar 

  11. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813–843 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. El Allati, A., Ould Medeni, M.B., Hassouni, Y.: Quantum steganography via Greenberger-Horne-Zeilinger GHZ4 state. Commun. Theor. Phys. 57, 577–582 (2012)

    Article  MATH  Google Scholar 

  13. Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: Steganalysis and improvement of a quantum steganography protocol via GHZ4 state. Chin. Phys. B 22, 060307 (2013)

    Article  Google Scholar 

  14. Gea-Banacloche, J.: Hiding messages in quantum data. J. Math. Phys. 43, 4531–4536 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83, 022310 (2011)

    Article  Google Scholar 

  16. Shaw, B.A., Brun, T.A.: Hiding quantum information in the perfect code. arXiv:quant-ph/1007.0793v2

  17. Cao, D., Song, W.L.: A novel quantum steganography with optimal private-key scheme. J. Inf. Comput. Sci. 8, 1793–1800 (2011)

    Google Scholar 

  18. Cao, D., Song, W.L.: Multi-party quantum steganography with GHZ private-key. J. Inf. Comput. Sci. 8, 2703–2709 (2011)

    Google Scholar 

  19. Cao, D., Song, W.L.: Multi-party quantum covert communication with entanglement private-keys. J. Appl. Sci. Electron. Inf. Eng. 30, 52–58 (2012)

    Google Scholar 

  20. Mihara, T.: Quantum steganography using prior entanglement. Phys. Lett. A 379, 952–955 (2015)

    Article  MATH  Google Scholar 

  21. Basharov, A.M., Gorbachev, V.N., Trubilko, A.I.: A quantum steganography protocol based on W class entangled states. Opt. Spectrosc. 112, 323–326 (2012)

    Article  Google Scholar 

  22. Martin, K.: Steganographic communication with quantum information. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 32–49. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77370-2_3

    Chapter  Google Scholar 

  23. Liao, X., Wen, Q.Y., Sun, Y., Zhang, J.: Multi-party covert communication with steganography and quantum secret sharing. J. Syst. Softw. 83, 1801–1804 (2011)

    Article  Google Scholar 

  24. Gao, F., Liu, B., Zhang, W.W., Wen, Q.Y., Chen, H.: Is quantum key distribution suitable for steganography? Quantum Inf. Process. 12, 625–630 (2012)

    Article  MathSciNet  Google Scholar 

  25. Collins, G.P.: Schrodinger’s games: for quantum prisoners, there may be no dilemma. Sci. Am. 282, 28–29 (2000)

    Google Scholar 

  26. Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X., Han, R.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002)

    Article  Google Scholar 

  27. Chen, K.Y., Hogg, T.: How well do people play a quantum prisoner’s dilemma. Quantum Inf. Process. 5, 43–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mogos, G.: Stego quantum algorithm. In: International Symposium on Computer Science and its Applications, pp. 187–190. IEEE Press, New York (2008)

    Google Scholar 

  29. Wang, S., Sang, J., Song, X.H., Niu, X.M.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)

    Article  Google Scholar 

  30. Qu, Z., He, H., Ma, S.: A novel self-adaptive quantum steganography based on quantum image and quantum watermark. In: Sun, X., Liu, A., Chao, H.-C., Bertino, E. (eds.) ICCCS 2016. LNCS, vol. 10040, pp. 394–403. Springer, Cham (2016). doi:10.1007/978-3-319-48674-1_35

    Chapter  Google Scholar 

  31. Sang, J.Z., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15, 4441–4460 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mihara, T.: Quantum steganography embedded any secret text without changing the content of cover data. J. Quantum Inf. Sci. 2, 10–14 (2012)

    Article  Google Scholar 

  33. Wei, Z.H., Chen, X.B., Niu, X.X., Yang, Y.X.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54, 2505–2515 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wei, Z.H., Chen, X.B., Niu, X.X., Yang, Y.X.: A novel quantum steganography protocol based on probability measurements. Int. J. Quantum Inf. 11, 1350068 (2013)

    Article  MATH  Google Scholar 

  35. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moire Pattern. Int. J. Theor. Phys. 54, 1021–1032 (2015)

    Article  MATH  Google Scholar 

  36. Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283, 4782–4786 (2010)

    Article  Google Scholar 

  37. Qu, Z.G., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Quantum steganography with large payload based on entanglement swapping of χ-type entangled states. Opt. Commun. 284, 2075–2082 (2011)

    Article  Google Scholar 

  38. Ye, T.Y., Jiang, L.Z.: Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states. Chin. Phys. B 22, 050309 (2013)

    Article  Google Scholar 

  39. Ye, T.Y., Jiang, L.Z.: Large payload quantum steganography based on cavity quantum electrodynamics. Chin. Phys. B 22, 040305 (2013)

    Article  Google Scholar 

  40. Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: A novel quantum covert channel protocol based on any quantum secure direct communication scheme. Commun. Theor. Phys. 59, 547–553 (2013)

    Article  Google Scholar 

  41. Xu, S.J., Chen, X.B., Niu, X.X., Yang, Y.X.: High-efficiency Quantum Steganography Based on the Tensor Product of Bell States. Sci. China Phys. Mech. Astron. 56, 1745–1754 (2013)

    Article  Google Scholar 

  42. Worley III, G.G.: Quantum watermarking by frequency of error when observing qubits in dissimilar bases. arXiv:quant-ph/0401041v2

  43. Fatahi, N., Naseri, M.: Quantum watermarking using entanglement swapping. Int. J. Theor. Phys. 51, 2094–2100 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mo, J., Ma, Z.F., Yang, Y.X., Niu, X.X.: A quantum watermarking protocol based on Bell dual basis. Int. J. Theor. Phys. 52, 3813–3819 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Iliyasu, M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zhang, W.W., Gao, F., Liu, B., Jia, H.Y., Wen, Q.Y., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52, 504–513 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12, 793–803 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 2765–2769 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  50. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Syst. 20, 379–388 (2014)

    Article  Google Scholar 

  51. Yang, Y.G., Xu, P., Tian, J., Zhang, H.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 13, 1931–1936 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  52. Wang, S., Song, X.H., Niu, X.M.: Quantum cosine transform based watermarking scheme for quantum images. Chin. J. Electron. 24, 321–325 (2015)

    Article  Google Scholar 

  53. Wei, Z.H., Chen, X.B., Xu, S.J., Niu, X.X., Yang, Y.X.: A spatial domain quantum watermarking scheme. Commun. Theor. Phys. 66, 66–76 (2016)

    Article  MathSciNet  Google Scholar 

  54. Yan, F., Iliyasu, A.M., Sun, B., Venegas-Andraca, S.E., Dong, F.Y., Hirota, K.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14, 1675–1692 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  55. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016)

    Article  MATH  Google Scholar 

  56. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  57. Li, P., Xiao, H., Li, B.: Quantum representation and watermark strategy for color images based on the controlled rotation of qubits. Quantum Inf. Proc. 15, 1–26 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61602281 and 61373131, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2013FM025, ZR2014FM003, ZR2015YL018, ZR2016YL011 and ZR2016YL014, the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China under Grant No. BS2015DX006, PAPD and CICAEET funds, and the Shandong Academy of Sciences Youth Fund Project, China under Grant Nos. 2015QN003, 2015QN011 and 2013QN007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujiang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Wang, L., Liu, G., Han, X., Zhao, D., Xu, L. (2017). The Categories of Quantum Information Hiding Protocol. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10602. Springer, Cham. https://doi.org/10.1007/978-3-319-68505-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68505-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68504-5

  • Online ISBN: 978-3-319-68505-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics