Skip to main content

PET/MRI in Lymphoma

  • Chapter
  • First Online:
PET/MRI in Oncology

Abstract

Hybrid PET/MR combines two advanced imaging techniques, offering the potential to improve image quality, reduce radiation dose and combine functional information from MR (dynamic contrast-enhanced sequences, diffusion-weighted imaging and magnetic resonance spectroscopy) with PET in the management of lymphoma. The reduction in radiation dose afforded by PET/MR in Hodgkin lymphoma, which is the commonest cancer in teenagers and young adults, is particularly appealing. PET/MR reduces radiation dose by approximately 60–77% compared with PET combined with full-dose diagnostic CT and 20–27% compared with PET combined with lower-dose CT.

To date, studies directly comparing PET/MR with PET/CT suggest they are likely equivalent for staging, although data regarding extranodal involvement are more limited than nodal lymphoma. Whole-body diffusion-weighted imaging (DWI) in isolation has been reported to provide similar staging information to half-body PET/CT without incurring any radiation, but DWI misses a substantial number of lesions and introduces some ‘false positive’ lesions when compared to PET/CT depending on the DWI criteria used to establish involvement, which are not currently standardised. This is a significant limitation when assessing sites of involvement on repeat imaging for response assessment. DWI does not appear to add value in addition to anatomical sequences in PET/MR at the current time.

PET/MR probably underestimates FDG uptake compared to PET/CT and MR attenuation in comparative studies, and correction algorithms will need to be optimised before PET/MR can replace PET/CT in most cases for response assessment using recommended international criteria with the five-point ‘Deauville’ scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright CL, Maly JJ, Zhang J, et al. Advancing precision nuclear medicine and molecular imaging for lymphoma. PET Clin. 2017;12(1):63–82. S1556-8598 (16)30090-6

    Article  PubMed  Google Scholar 

  2. Povoski SP, Hall NC, Murrey DA Jr, et al. Feasibility of a multimodal (18)F-FDG-directed lymph node surgical excisional biopsy approach for appropriate diagnostic tissue sampling in patients with suspected lymphoma. BMC Cancer. 2015;15:378. https://doi.org/10.1186/s12885-015-1381-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sin KM, Ho SK, Wong BY, et al. Beyond the lymph nodes: FDG-PET/CT in primary extranodal lymphoma. Clin Imaging. 2016;42:25–33. S0899-7071 (16)30180-2 [pii]

    Article  PubMed  Google Scholar 

  4. la Fougere C, Hundt W, Brockel N, et al. Value of PET/CT versus PET and CT performed as separate investigations in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2006;33(12):1417–25. https://doi.org/10.1007/s00259-006-0171-x.

    Article  PubMed  Google Scholar 

  5. Catalano OA, Masch WR, Catana C, et al. An overview of PET/MRI, focused on clinical applications. Abdom Radiol. 2016;42(2):631–44. https://doi.org/10.1007/s00261-016-0894-5.

  6. Rakheja R, DeMello L, Chandarana H, et al. Comparison of the accuracy of PET/CT and PET/MRI spatial registration of multiple metastatic lesions. Am J Roentgenol. 2013;201(5):1120–3. https://doi.org/10.2214/AJR.13.11305.

    Article  Google Scholar 

  7. Sun B, Song L, Wang X, et al. Lymphoma and inflammation in the orbit: diagnostic performance with diffusion-weighted imaging and dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2016;45(5):1438–45. https://doi.org/10.1002/jmri.25480.

    Article  PubMed  Google Scholar 

  8. de la Pena MD J, Vicente LG, Alonso RC, et al. The multiple faces of nervous system lymphoma. Atypical magnetic resonance imaging features and contribution of the advanced imaging. Curr Probl Diagn Radiol. 2016;46(2):136–45. S0363-0188(16)30007-X [pii]

    Article  Google Scholar 

  9. Mathas S, Hartmann S, Kuppers R. Hodgkin lymphoma: pathology and biology. Semin Hematol. 2016;53(3):139–47. https://doi.org/10.1053/j.seminhematol.2016.05.007.

    Article  PubMed  Google Scholar 

  10. Meignan M, Itti E, Gallamini A, et al. FDG PET/CT imaging as a biomarker in lymphoma. Eur J Nucl Med Mol Imaging. 2015;42(4):623–33. https://doi.org/10.1007/s00259-014-2973-6.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced international prognostic index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014;123(6):837–42. https://doi.org/10.1182/blood-2013-09-524108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caimi PF, Hill BT, Hsi ED, et al. Clinical approach to diffuse large B cell lymphoma. Blood Rev. 2016;30(6):477–91. S0268-960X(16)30033-9 [pii]

    Article  PubMed  Google Scholar 

  13. Kahl BS, Yang DT. Follicular lymphoma: evolving therapeutic strategies. Blood. 2016;127(17):2055–63. https://doi.org/10.1182/blood-2015-11-624288.

    Article  CAS  PubMed  Google Scholar 

  14. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32(27):3048–58. JCO.2013.53.5229 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  15. Engert A, Raemaekers J. Treatment of early-stage Hodgkin lymphoma. Semin Hematol. 2016;53(3):165–70. https://doi.org/10.1053/j.seminhematol.2016.05.004.

    Article  PubMed  Google Scholar 

  16. Vassilakopoulos TP, Johnson PW. Treatment of advanced-stage Hodgkin lymphoma. Semin Hematol. 2016;53(3):171–9. https://doi.org/10.1053/j.seminhematol.2016.05.006.

    Article  PubMed  Google Scholar 

  17. Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9. https://doi.org/10.1016/S0140-6736(11)61940-5.

    Article  CAS  PubMed  Google Scholar 

  18. Engert A. XVII. Treatment of advanced-stage Hodgkin lymphoma. Hematol Oncol. 2015;33(Suppl 1):87–9. https://doi.org/10.1002/hon.2225.

    Article  PubMed  Google Scholar 

  19. Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62. https://doi.org/10.1016/S0140-6736(15)60165-9.

    Article  CAS  PubMed  Google Scholar 

  20. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9. https://doi.org/10.1200/JCO.2011.38.0410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9. https://doi.org/10.1056/NEJMoa1411087.

    Article  CAS  PubMed  Google Scholar 

  22. Moskowitz CH, Ribrag V, Michot J, et al. PD-1 blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after Brentuximab Vedotin failure: preliminary results from a phase 1b study (KEYNOTE-013). Blood. 2014;124(21):290.

    Article  Google Scholar 

  23. Ansell SM. Hodgkin lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91(4):434–42. https://doi.org/10.1002/ajh.24272.

    Article  CAS  PubMed  Google Scholar 

  24. Davies AJ, Caddy J, Maishman T, et al. A prospective randomised trial of targeted therapy for diffuse large B-cell lymphoma (DLBCL) based upon real-time gene expression profiling: the Remodl-B study of the UK NCRI and SAKK lymphoma groups. Blood. 2015;126(23):812.

    Article  Google Scholar 

  25. Salles G, Seymour JF, Offner F, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011;377(9759):42–51. https://doi.org/10.1016/S0140-6736(10)62175-7.

    Article  CAS  PubMed  Google Scholar 

  26. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. JCO.2013.54.8800 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gascoyne RD. Establishing the diagnosis of lymphoma: from initial biopsy to clinical staging. Oncology (Williston Park). 1998;12(10 Suppl 8):11–6.

    CAS  PubMed  Google Scholar 

  28. Zangos S, Eichler K, Wetter A, et al. MR-guided biopsies of lesions in the retroperitoneal space: technique and results. Eur Radiol. 2006;16(2):307–12. https://doi.org/10.1007/s00330-005-2870-2.

    Article  CAS  PubMed  Google Scholar 

  29. Agid R, Sklair-Levy M, Bloom AI, et al. CT-guided biopsy with cutting-edge needle for the diagnosis of malignant lymphoma: experience of 267 biopsies. Clin Radiol. 2003;58(2):143–7. S0009926002910615 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Weiler-Sagie M, Bushelev O, Epelbaum R, et al. (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51(1):25–30. https://doi.org/10.2967/jnumed.109.067892.

    Article  PubMed  Google Scholar 

  31. Chalaye J, Luciani A, Enache C, et al. Clinical impact of contrast-enhanced computed tomography combined with low-dose (18)F-fluorodeoxyglucose positron emission tomography/computed tomography on routine lymphoma patient management. Leuk Lymphoma. 2014;55(12):2887–92. https://doi.org/10.3109/10428194.2014.900761.

    Article  CAS  PubMed  Google Scholar 

  32. Elstrom RL, Leonard JP, Coleman M, et al. Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol. 2008;19(10):1770–3. https://doi.org/10.1093/annonc/mdn282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinilla I, Gomez-Leon N, Del Campo-Del Val L, et al. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma. Q J Nucl Med Mol Imaging. 2011;55(5):567–75. R39102188 [pii]

    CAS  PubMed  Google Scholar 

  34. Raanani P, Shasha Y, Perry C, et al. Is CT scan still necessary for staging in Hodgkin and non-Hodgkin lymphoma patients in the PET/CT era? Ann Oncol. 2006;17(1):117–22. mdj024 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Barrington SF, Kirkwood AA, Franceschetto A, et al. PET-CT for staging and early response: results from the response-adapted therapy in advanced Hodgkin lymphoma study. Blood. 2016;127(12):1531–8. https://doi.org/10.1182/blood-2015-11-679407.

    Article  CAS  PubMed  Google Scholar 

  36. Bodet-Milin C, Touzeau C, Leux C, et al. Prognostic impact of 18F-fluoro-deoxyglucose positron emission tomography in untreated mantle cell lymphoma: a retrospective study from the GOELAMS group. Eur J Nucl Med Mol Imaging. 2010;37(9):1633–42. https://doi.org/10.1007/s00259-010-1469-2.

    Article  CAS  PubMed  Google Scholar 

  37. Quarles van Ufford HM, van Tinteren H, Stroobants SG, et al. Added value of baseline 18F-FDG uptake in serial 18F-FDG PET for evaluation of response of solid extracerebral tumors to systemic cytotoxic neoadjuvant treatment: a meta-analysis. J Nucl Med. 2010;51(10):1507–16. https://doi.org/10.2967/jnumed.110.075457.

    Article  PubMed  Google Scholar 

  38. Barrington SF, Mackewn JE, Schleyer P, et al. Establishment of a UK-wide network to facilitate the acquisition of quality assured FDG-PET data for clinical trials in lymphoma. Ann Oncol. 2011;22(3):739–45. https://doi.org/10.1093/annonc/mdq428.

    Article  CAS  PubMed  Google Scholar 

  39. El-Galaly TC, d’Amore F, Mylam KJ, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14. https://doi.org/10.1200/JCO.2012.42.4036.

    Article  PubMed  Google Scholar 

  40. Khan AB, Barrington SF, Mikhaeel NG, et al. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood. 2013;122(1):61–7. https://doi.org/10.1182/blood-2012-12-473389.

    Article  CAS  PubMed  Google Scholar 

  41. Berthet L, Cochet A, Kanoun S, et al. In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT provides better diagnostic performance and prognostic stratification than does biopsy. J Nucl Med. 2013;54(8):1244–50. https://doi.org/10.2967/jnumed.112.114710.

    Article  CAS  PubMed  Google Scholar 

  42. Cerci JJ, Gyorke T, Fanti S, et al. Combined PET and biopsy evidence of marrow involvement improves prognostic prediction in diffuse large B-cell lymphoma. J Nucl Med. 2014;55(10):1591–7. https://doi.org/10.2967/jnumed.113.134486.

    Article  PubMed  Google Scholar 

  43. Cheson BD. Hodgkin lymphoma: protecting the victims of our success. J Clin Oncol. 2012;30(36):4456–7. https://doi.org/10.1200/JCO.2012.45.5402.

    Article  PubMed  Google Scholar 

  44. Alzahrani M, El-Galaly TC, Hutchings M, et al. The value of routine bone marrow biopsy in patients with diffuse large B-cell lymphoma staged with PET/CT: a Danish-Canadian study. Ann Oncol. 2016;27(6):1095–9. https://doi.org/10.1093/annonc/mdw137.

    Article  CAS  PubMed  Google Scholar 

  45. Paone G, Itti E, Haioun C, et al. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate. Eur J Nucl Med Mol Imaging. 2009;36(5):745–50. https://doi.org/10.1007/s00259-008-1021-9.

    Article  PubMed  Google Scholar 

  46. Pelosi E, Penna D, Douroukas A, et al. Bone marrow disease detection with FDG-PET/CT and bone marrow biopsy during the staging of malignant lymphoma: results from a large multicentre study. Q J Nucl Med Mol Imaging. 2011;55(4):469–75. R39102239 [pii]

    CAS  PubMed  Google Scholar 

  47. Moskowitz CH, Schoder H. Current status of the role of PET imaging in diffuse large B-cell lymphoma. Semin Hematol. 2015;52(2):138–42. https://doi.org/10.1053/j.seminhematol.2015.01.004.

    Article  PubMed  Google Scholar 

  48. Campbell J, Seymour JF, Matthews J, et al. The prognostic impact of bone marrow involvement in patients with diffuse large cell lymphoma varies according to the degree of infiltration and presence of discordant marrow involvement. Eur J Haematol. 2006;76(6):473–80. EJH644 [pii]

    Article  PubMed  Google Scholar 

  49. Luminari S, Biasoli I, Arcaini L, et al. The use of FDG-PET in the initial staging of 142 patients with follicular lymphoma: a retrospective study from the FOLL05 randomized trial of the Fondazione Italiana Linfomi. Ann Oncol. 2013;24(8):2108–12. https://doi.org/10.1093/annonc/mdt137.

    Article  CAS  PubMed  Google Scholar 

  50. Schoder H, Noy A, Gonen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(21):4643–51. JCO.2005.12.072 [pii]

    Article  PubMed  Google Scholar 

  51. Watanabe R, Tomita N, Takeuchi K, et al. SUVmax in FDG-PET at the biopsy site correlates with the proliferation potential of tumor cells in non-Hodgkin lymphoma. Leuk Lymphoma. 2010;51(2):279–83. https://doi.org/10.3109/10428190903440953.

    Article  PubMed  Google Scholar 

  52. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. JCO.2006.09.2403 [pii]

    Article  PubMed  Google Scholar 

  53. Hutchings M, Loft A, Hansen M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–9. 2005-06-2252 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Gallamini A, Hutchings M, Rigacci L, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52. JCO.2007.11.6525 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Raemaekers JM, Andre MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32(12):1188–94. https://doi.org/10.1200/JCO.2013.51.9298.

    Article  PubMed  Google Scholar 

  56. Radford J, Illidge T, Counsell N, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607. https://doi.org/10.1056/NEJMoa1408648.

    Article  CAS  PubMed  Google Scholar 

  57. Follows GA, Ardeshna KM, Barrington SF, et al. Guidelines for the first line management of classical Hodgkin lymphoma. Br J Haematol. 2014;166(1):34–49. https://doi.org/10.1111/bjh.12878.

    Article  CAS  PubMed  Google Scholar 

  58. Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29. https://doi.org/10.1056/NEJMoa1510093.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zinzani PL, Broccoli A, Gioia DM, et al. Interim positron emission tomography response–adapted therapy in advanced-stage Hodgkin lymphoma: final results of the phase II part of the HD0801 study. JCO. 2016;34(12):1376–85. https://doi.org/10.1200/JCO.2015.63.0699.

    Article  CAS  Google Scholar 

  60. Mamot C, Klingbiel D, Hitz F, et al. Final results of a prospective evaluation of the predictive value of interim positron emission tomography in patients with diffuse large B-cell lymphoma treated with R-CHOP-14 (SAKK 38/07). J Clin Oncol. 2015;33(23):2523–9. https://doi.org/10.1200/JCO.2014.58.9846.

    Article  CAS  PubMed  Google Scholar 

  61. Huntington SF, Nasta SD, Schuster SJ, et al. Utility of interim and end-of-treatment [(18)F]-fluorodeoxyglucose positron emission tomography-computed tomography in frontline therapy of patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2015;56(9):2579–84. https://doi.org/10.3109/10428194.2015.1007506.

    Article  PubMed  Google Scholar 

  62. Carr R, Fanti S, Paez D, et al. Prospective international cohort study demonstrates inability of interim PET to predict treatment failure in diffuse large B-cell lymphoma. J Nucl Med. 2014;55(12):1936–44. https://doi.org/10.2967/jnumed.114.145326.

    Article  PubMed  Google Scholar 

  63. Zijlstra JM, Burggraaff CN, Kersten MJ, et al. FDG-PET as a biomarker for early response in diffuse large B-cell lymphoma as well as in Hodgkin lymphoma? Ready for implementation in clinical practice? Haematologica. 2016;101(11):1279–83. haematol.2016.142752 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stewart DA, Kloiber R, Owen C, et al. Results of a prospective phase II trial evaluating interim positron emission tomography-guided high dose therapy for poor prognosis diffuse large B-cell lymphoma. Leuk Lymphoma. 2014;55(9):2064–70. https://doi.org/10.3109/10428194.2013.862242.

    Article  CAS  PubMed  Google Scholar 

  65. Pardal E, Coronado M, Martin A, et al. Intensification treatment based on early FDG-PET in patients with high-risk diffuse large B-cell lymphoma: a phase II GELTAMO trial. Br J Haematol. 2014;167(3):327–36. https://doi.org/10.1111/bjh.13036.

    Article  CAS  PubMed  Google Scholar 

  66. Barrington SF, Mikhaeel NG. PET scans for staging and restaging in diffuse large B-cell and follicular lymphomas. Curr Hematol Malig Rep. 2016;11(3):185–95. https://doi.org/10.1007/s11899-016-0318-1.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Trotman J, Luminari S, Boussetta S, et al. Prognostic value of PET-CT after first-line therapy in patients with follicular lymphoma: a pooled analysis of central scan review in three multicentre studies. Lancet Haematol. 2014;1(1):e17–27. https://doi.org/10.1016/S2352-3026(14)70008-0.

    Article  PubMed  Google Scholar 

  68. Moskowitz CH, Matasar MJ, Zelenetz AD, et al. Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood. 2012;119(7):1665–70. https://doi.org/10.1182/blood-2011-10-388058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sauter CS, Matasar MJ, Meikle J, et al. Prognostic value of FDG-PET prior to autologous stem cell transplantation for relapsed and refractory diffuse large B-cell lymphoma. Blood. 2015;125(16):2579–81. https://doi.org/10.1182/blood-2014-10-606939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moskowitz AJ, Schoder H, Yahalom J, et al. PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosfamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin’s lymphoma: a non-randomised, open-label, single-centre, phase 2 study. Lancet Oncol. 2015;16(3):284–92. https://doi.org/10.1016/S1470-2045(15)70013-6.

    Article  CAS  PubMed  Google Scholar 

  71. Meignan M, Itti E, Bardet S, et al. Development and application of a real-time on-line blinded independent central review of interim PET scans to determine treatment allocation in lymphoma trials. J Clin Oncol. 2009;27(16):2739–41. https://doi.org/10.1200/JCO.2009.22.4089.

    Article  PubMed  Google Scholar 

  72. Uslu L, Doing J, Link M, Rosenberg J, Quon A, Daldrup-Link HE. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med. 2015;56(2):274–86.

    Article  PubMed  Google Scholar 

  73. Furth C, Steffen IG, Amthauer H, et al. Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol. 2009;27(26):4385–91. https://doi.org/10.1200/JCO.2008.19.7814.

    Article  PubMed  Google Scholar 

  74. Riad R, Omar W, Kotb M, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(2):319–29. https://doi.org/10.1007/s00259-009-1276-9.

    Article  PubMed  Google Scholar 

  75. Bakhshi S, Radhakrishnan V, Sharma P, et al. Pediatric nonlymphoblastic non-Hodgkin lymphoma: baseline, interim, and posttreatment PET/CT versus contrast-enhanced CT for evaluation--a prospective study. Radiology. 2012;262(3):956–68. https://doi.org/10.1148/radiol.11110936.

    Article  PubMed  Google Scholar 

  76. Paulino AC, Margolin J, Dreyer Z, et al. Impact of PET-CT on involved field radiotherapy design for pediatric Hodgkin lymphoma. Pediatr Blood Cancer. 2012;58(6):860–4. https://doi.org/10.1002/pbc.23273.

    Article  PubMed  Google Scholar 

  77. Mauz-Korholz C, Hasenclever D, Dorffel W, et al. Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol. 2010;28(23):3680–6. https://doi.org/10.1200/JCO.2009.26.9381.

    Article  CAS  PubMed  Google Scholar 

  78. Hasenclever D, Kurch L, Mauz-Korholz C, et al. qPET – a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(7):1301–8. https://doi.org/10.1007/s00259-014-2715-9.

    Article  PubMed  Google Scholar 

  79. Kwee TC, Kwee RM, Verdonck LF, et al. Magnetic resonance imaging for the detection of bone marrow involvement in malignant lymphoma. Br J Haematol. 2008;141(1):60–8. https://doi.org/10.1111/j.1365-2141.2008.07020.x.

    Article  PubMed  Google Scholar 

  80. Daldrup-Link HE, Henning T, Link TM. MR imaging of therapy-induced changes of bone marrow. Eur Radiol. 2007;17(3):743–61. https://doi.org/10.1007/s00330-006-0404-1.

    Article  PubMed  Google Scholar 

  81. Cieszanowski A, Lisowska A, Dabrowska M, et al. MR imaging of pulmonary nodules: detection rate and accuracy of size estimation in comparison to computed tomography. PLoS One. 2016;11(6):e0156272. https://doi.org/10.1371/journal.pone.0156272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Regacini R, Puchnick A, Shigueoka DC, et al. Whole-body diffusion-weighted magnetic resonance imaging versus FDG-PET/CT for initial lymphoma staging: systematic review on diagnostic test accuracy studies. Sao Paulo Med J. 2015;133(2):141–50. https://doi.org/10.1590/1516-3180.2014.8312810.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Albano D, Patti C, Lagalla R, et al. Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma. J Magn Reson Imaging. 2016;45(4):1082–9. https://doi.org/10.1002/jmri.25439.

    Article  PubMed  Google Scholar 

  84. Lin C, Itti E, Luciani A, et al. Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study. Investig Radiol. 2011;46(5):341–9. https://doi.org/10.1097/RLI.0b013e3182087b03.

    Article  Google Scholar 

  85. Chen Y, Zhong J, Wu H, et al. The clinical application of whole-body diffusion-weighted imaging in the early assessment of chemotherapeutic effects in lymphoma: the initial experience. Magn Reson Imaging. 2012;30(2):165–70. https://doi.org/10.1016/j.mri.2011.09.019.

    Article  PubMed  Google Scholar 

  86. Toledano-Massiah S, Luciani A, Itti E, et al. Whole-body diffusion-weighted imaging in Hodgkin lymphoma and diffuse large B-cell lymphoma. Radiographics. 2015;35(3):747–64. https://doi.org/10.1148/rg.2015140145.

    Article  PubMed  Google Scholar 

  87. Mohile NA, Deangelis LM, Abrey LE. The utility of body FDG PET in staging primary central nervous system lymphoma. Neuro-Oncology. 2008;10(2):223–8. https://doi.org/10.1215/15228517-2007-061.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Haldorsen IS, Espeland A, Larsson EM. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol. 2011;32(6):984–92. https://doi.org/10.3174/ajnr.A2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. DeAngelis LM, Boutros D. Leptomeningeal metastasis. Cancer Investig. 2005;23(2):145–54.

    Article  Google Scholar 

  90. Senocak E, Oguz KK, Ozgen B, et al. Parenchymal lymphoma of the brain on initial MR imaging: a comparative study between primary and secondary brain lymphoma. Eur J Radiol. 2011;79(2):288–94. https://doi.org/10.1016/j.ejrad.2010.01.017.

    Article  PubMed  Google Scholar 

  91. Rottnek M, Strauchen J, Moore F, et al. Primary dural mucosa-associated lymphoid tissue-type lymphoma: case report and review of the literature. J Neuro-Oncol. 2004;68(1):19–23.

    Article  CAS  Google Scholar 

  92. Kuker W, Herrlinger U, Gronewaller E, et al. Ocular manifestation of primary nervous system lymphoma: what can be expected from imaging? J Neurol. 2002;249(12):1713–6. https://doi.org/10.1007/s00415-002-0919-6.

    Article  CAS  PubMed  Google Scholar 

  93. Nabavizadeh SA, Vossough A, Hajmomenian M, et al. Neuroimaging in central nervous system lymphoma. Hematol Oncol Clin North Am. 2016;30(4):799–821. https://doi.org/10.1016/j.hoc.2016.03.005.

    Article  PubMed  Google Scholar 

  94. Schroeder PC, Post MJ, Oschatz E, et al. Analysis of the utility of diffusion-weighted MRI and apparent diffusion coefficient values in distinguishing central nervous system toxoplasmosis from lymphoma. Neuroradiology. 2006;48(10):715–20. https://doi.org/10.1007/s00234-006-0123-y.

    Article  PubMed  Google Scholar 

  95. Barajas RF Jr, Rubenstein JL, Chang JS, et al. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2010;31(1):60–6. https://doi.org/10.3174/ajnr.A1750.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yamashita K, Yoshiura T, Hiwatashi A, et al. Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (1)(8)F-fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013;55(2):135–43. https://doi.org/10.1007/s00234-012-1089-6.

    Article  PubMed  Google Scholar 

  97. Pollock JM, Tan H, Kraft RA, et al. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am. 2009;17(2):315–38. https://doi.org/10.1016/j.mric.2009.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kickingereder P, Sahm F, Wiestler B, et al. Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. AJNR Am J Neuroradiol. 2014;35(8):1503–8. https://doi.org/10.3174/ajnr.A3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chinn RJ, Wilkinson ID, Hall-Craggs MA, et al. Toxoplasmosis and primary central nervous system lymphoma in HIV infection: diagnosis with MR spectroscopy. Radiology. 1995;197(3):649–54. https://doi.org/10.1148/radiology.197.3.7480733.

    Article  CAS  PubMed  Google Scholar 

  100. Kickingereder P, Wiestler B, Sahm F, et al. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology. 2014;272(3):843–50. https://doi.org/10.1148/radiol.14132740.

    Article  PubMed  Google Scholar 

  101. Platzek I, Beuthien-Baumann B, Ordemann R, et al. FDG PET/MRI for the assessment of lymph node involvement in lymphoma: initial results and role of diffusion-weighted MR. Acad Radiol. 2014;21(10):1314–9. https://doi.org/10.1016/j.acra.2014.05.019.

  102. Afaq A, Fraioli F, Sidhu H, et al. Comparison of PET/MRI with PET/CT in the evaluation of disease status in lymphoma. Clin Nucl Med. 2017;42(1):e1–7. https://doi.org/10.1097/RLU.0000000000001344.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Herrmann K, Queiroz M, Huellner MW, et al. Diagnostic performance of FDG-PET/MRI and WB-DW-MRI in the evaluation of lymphoma: a prospective comparison to standard FDG-PET/CT. BMC Cancer. 2015;15:1002. https://doi.org/10.1186/s12885-015-2009-z.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Grueneisen J, Sawicki LM, Schaarschmidt BM, et al. Evaluation of a fast protocol for staging lymphoma patients with integrated PET/MRI. PLoS One. 2016;11(6):e0157880. https://doi.org/10.1371/journal.pone.0157880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heacock L, Weissbrot J, Raad R, et al. PET/MRI for the evaluation of patients with lymphoma: initial observations. AJR Am J Roentgenol. 2015;204(4):842–8. https://doi.org/10.2214/AJR.14.13181.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Raad RA, Friedman KP, Heacock L, et al. Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. J Magn Reson Imaging. 2016;43(2):504–11. https://doi.org/10.1002/jmri.25005.

    Article  PubMed  Google Scholar 

  107. Atkinson W, Catana C, Abramson JS, et al. Hybrid FDG-PET/MRI compared to FDG-PET/CT in adult lymphoma patients. Abdom Radiol (NY). 2016;41(7):1338–48. https://doi.org/10.1007/s00261-016-0638-6.

  108. Giraudo C, Raderer M, Karanikas G, et al. 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance in lymphoma: comparison with 18F-fluorodeoxyglucose positron emission tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging. Investig Radiol. 2016;51(3):163–9. https://doi.org/10.1097/RLI.0000000000000218.

    Article  CAS  Google Scholar 

  109. Mayerhoefer ME, Karanikas G, Kletter K, et al. Can interim 18F-FDG PET or diffusion-weighted MRI predict end-of-treatment outcome in FDG-avid MALT lymphoma after rituximab-based therapy?: a preliminary study in 15 patients. Clin Nucl Med. 2016;41(11):837–43. https://doi.org/10.1097/RLU.0000000000001395.

    Article  PubMed  Google Scholar 

  110. Ponisio MR, McConathy J, Laforest R, et al. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol. 2016;46(9):1258–68. https://doi.org/10.1007/s00247-016-3601-3.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sher AC, Seghers V, Paldino MJ, et al. Assessment of sequential PET/MRI in comparison with PET/CT of pediatric lymphoma: a prospective study. AJR Am J Roentgenol. 2016;206(3):623–31. https://doi.org/10.2214/AJR.15.15083.

    Article  PubMed  Google Scholar 

  112. Buck AK, Bommer M, Stilgenbauer S, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66(22):11055–61. 66/22/11055 [pii]

    Article  CAS  PubMed  Google Scholar 

  113. Mena E, Lindenberg ML, Turkbey BI, et al. A pilot study of the value of 18F-fluoro-deoxy-thymidine PET/CT in predicting viable lymphoma in residual 18F-FDG avid masses after completion of therapy. Clin Nucl Med. 2014;39(10):874–81. https://doi.org/10.1097/RLU.0000000000000539.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dhilly M, Guillouet S, Patin D, et al. 2-[18F]fludarabine, a novel positron emission tomography (PET) tracer for imaging lymphoma: a micro-PET study in murine models. Mol Imaging Biol. 2014;16(1):118–26. https://doi.org/10.1007/s11307-013-0659-2.

    Article  PubMed  Google Scholar 

  115. Hovhannisyan N, Guillouet S, Fillesoye F, et al. Evaluation of the specificity of [(18)F]fludarabine PET/CT in a xenograft model of follicular lymphoma: comparison with [(18)F]FDG and impact of rituximab therapy. EJNMMI Res. 2015;5:23. eCollection 2015. https://doi.org/10.1186/s13550-015-0101-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hovhannisyan N, Dhilly M, Guillouet S, et al. Comparative analysis between [(18)F]Fludarabine-PET and [(18)F]FDG-PET in a murine model of inflammation. Mol Pharm. 2016;13(6):2136–9. https://doi.org/10.1021/acs.molpharmaceut.6b00050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

King’s College London and UCL Comprehensive Cancer Imaging Centre. Funded by the CRUK and EPSRC in association with the MRC and DoH (England).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally F. Barrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrington, S.F., Friedman, K. (2018). PET/MRI in Lymphoma. In: Iagaru, A., Hope, T., Veit-Haibach, P. (eds) PET/MRI in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-68517-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68517-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68516-8

  • Online ISBN: 978-3-319-68517-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics