Skip to main content

An Ultra Low Noise CMOS THz Imager

  • Chapter
  • First Online:
Ultra Low Noise CMOS Image Sensors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The demand for terahertz (THz) detectors with the capability of delivering real-time imaging increases for an ever broader range of applications such as security (Liu et al. in Proc IEEE 95:1514–1527, 2007, [1]), non destructive testing (Yakovlev et al. in IEEE Trans Terahertz Sci Technol 5:810–816, 2015, [2]), medical imaging (Taylor et al. in IEEE Trans Terahertz Sci Technol 1:201–219, 2011, [3]), pharmaceutical applications (Kim et al. in J Lightwave Technol 32:3768–3773, 2014, [4]), soil inspection (Dworak et al. in Sensors 11:9973, 2011, [5]) and food inspection (Han et al. in Development of sub-thz gyrotron for real-time food inspection,pp. 1–2, 2011, [6]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, X.-C. Zhang, Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95(8), 1514–1527 (2007)

    Article  Google Scholar 

  2. E. Yakovlev, K. Zaytsev, I. Dolganova, S. Yurchenko, Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy. IEEE Trans. Terahertz Sci. Technol. 5(5), 810–816 (2015)

    Article  Google Scholar 

  3. Z. Taylor, R. Singh, D. Bennett, P. Tewari, C. Kealey, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J. Hubschman, E. Brown, W. Grundfest, Thz medical imaging: in vivo hydration sensing. IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011)

    Article  Google Scholar 

  4. J.-Y. Kim, R. Boenawan, Y. Ueno, K. Ajito, Quantitative mapping of pharmaceutical cocrystals within cellulose by terahertz spectroscopy. J. Lightwave Technol. 32(20), 3768–3773 (2014)

    Article  Google Scholar 

  5. V. Dworak, S. Augustin, R. Gebbers, Application of terahertz radiation to soil measurements: initial results. Sensors 11(10), 9973 (2011), http://www.mdpi.com/1424-8220/11/10/9973

  6. S.-T. Han, W.K. Park, H.S. Chun, Development of sub-thz gyrotron for real-time food inspection, in 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2011), pp. 1–2

    Google Scholar 

  7. F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, H. Roskos, Thz active imaging systems with real-time capabilities. IEEE Trans. Terahertz Sci. Technol. 1(1), 183–200 (2011)

    Article  Google Scholar 

  8. F. Simoens, J. Meilhan, J.-A. Nicolas, Terahertz real-time imaging uncooled arrays based on antenna-coupled bolometers or fet developed at cea-leti. J. Infrared Millimeter Terahertz Waves 36(10), 961–985 (2015). https://doi.org/10.1007/s10762-015-0197-x

  9. R. Han, Y. Zhang, Y. Kim, D.Y. Kim, H. Shichijo, E. Afshari, K. Kenneth, Active terahertz imaging using schottky diodes in cmos: array and 860-ghz pixel. IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013)

    Article  Google Scholar 

  10. W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. L, R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C.A. Saylor, L.C. Brunel, Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91(11), 9346–9353 (2002). https://doi.org/10.1063/1.1468257

  11. R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. Keller, A. Cathelin, A. Kaiser, U. Pfeiffer, A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm cmos. IEEE J. Solid-State Circuits 47(12), 2999–3012 (2012)

    Article  Google Scholar 

  12. F. Schuster, H. Videlier, A. Dupret, D. Coquillat, M. Sakowicz, J. Rostaing, M. Tchagaspanian, B. Giffard, W. Knap, A broadband thz imager in a low-cost cmos technology, in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2011), pp. 42–43

    Google Scholar 

  13. D.Y. Kim, S. Park, R. Han, K. Kenneth, 820-ghz imaging array using diode-connected nmos transistors in 130-nm cmos, in 2013 Symposium on VLSI Circuits (VLSIC) (2013), pp. C12–C13

    Google Scholar 

  14. A. Ghaffari, E. Klumperink, M. Soer, B. Nauta, Tunable high-q n-path band-pass filters: Modeling and verification. IEEE J. Solid-State Circuits 46(5), 998–1010 (2011)

    Article  Google Scholar 

  15. A. Boukhayma, J.-P. Rostaing, A. Mollard, F. Guellec, M. Benetti, G. Ducournau, J.-F. Lampin, A. Dupret, C. Enz, M. Tchagaspanian, J.-A. Nicolas, A 533pw nep \(31\times 31\) pixel thz image sensor based on in-pixel demodulation, in ESSCIRC 2014-40th European Solid State Circuits Conference (ESSCIRC) (2014), pp. 303–306

    Google Scholar 

  16. M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43(3), 380–387 (1996)

    Article  Google Scholar 

  17. M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993). https://doi.org/10.1103/PhysRevLett.71.2465

  18. A. Lisauskas, U. Pfeiffer, E. jefors, P.H. Bolvar, D. Glaab, H.G. Roskos, Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105(11), 2009. https://doi.org/10.1063/1.3140611

  19. E. Ojefors, U. Pfeiffer, A. Lisauskas, H. Roskos, A 0.65 thz focal-plane array in a quarter-micron cmos process technology. IEEE J. Solid-State Circuits 44(7), 1968–1976 (2009)

    Article  Google Scholar 

  20. C. Enz, G. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  21. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, W. Knap, Broadband terahertz imaging with highly sensitive silicon cmos detectors. Opt. Express 19(8), 7827–7832 (2011), http://www.opticsexpress.org/abstract.cfm?URI=oe-19-8-7827

  22. F. Krummenacher, N. Joehl, A 4-mhz cmos continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits 23(3), 750–758 (1988)

    Article  Google Scholar 

  23. D. von Grunigen, R. Sigg, J. Schmid, G. Moschytz, H. Melchior, An integrated cmos switched-capacitor bandpass filter based on n-path and frequency-sampling principles. IEEE J. Solid-State Circuits 18(6), 753–761 (1983)

    Article  Google Scholar 

  24. M. Darvishi, R. van der Zee, B. Nauta, Design of active n-path filters. IEEE J. Solid-State Circuits 48(12), 2962–2976 (2013)

    Article  Google Scholar 

  25. A. Boukhayma, A. Dupret, J.-P. Rostaing, C. Enz, A low-noise cmos thz imager based on source modulation and an in-pixel high-q passive switched-capacitor n-path filter. Sensors 16(3), (2016), http://www.mdpi.com/1424-8220/16/3/325

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assim Boukhayma .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boukhayma, A. (2018). An Ultra Low Noise CMOS THz Imager. In: Ultra Low Noise CMOS Image Sensors . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68774-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68774-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68773-5

  • Online ISBN: 978-3-319-68774-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics