Skip to main content

Mycorrhizal Fungi as Control Agents Against Plant Pathogens

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

Biofertilizers comprise single or consortia of living microorganisms which are responsible for the direct or indirect benefits rendered to growth of various plants. These microbial inoculants are produced from cultures of certain soil organisms that can improve soil fertility and crop productivity. They solubilise phosphorous, fix atmospheric nitrogen, oxidize sulfur, decompose organic material and alter the dynamics and properties of soil resulting in various benefits to plant growth and crop production. Biofertilizers help to increase access to nutrients thus providing growth-promoting factors for plants. This increased availability and efficient absorption of nutrients stimulates plant growth by hormone action and improves crop yield. One of the most abundant fungi in agricultural soil, the arbuscular mycorrhizal (AM) fungi, play a very important role as biofertilizers. They form mutualistic relationships with roots of 90% of plants, promote absorption of nutrients and water, control plant diseases, and improve soil structure. Plants colonized by mycorrhizae grow better than those without them and are beneficial in natural and agricultural systems. The use of AM fungi as biofertilizers is not new; they have been produced for use in agriculture, horticulture, landscape restoration, and soil remediation for almost two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adholeya A, Tiwari P, Singh R (2005) Large scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Strullu DG, Fortin A (eds) In Vitro culture of mycorrhizae. Springer, Berlin, pp 315–338

    Google Scholar 

  • Akhtar SM, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:410–417

    Google Scholar 

  • Ames RN (1987) Mycorrhizosphere morphology and microbiology. In: Sylvia DM, Hung LL, Graham SH (eds) Mycorrhizae in the next deacade. Proc 7th NACOM, Gainesville, FL

    Google Scholar 

  • Arabi MIE, Ayoubi SKZ, Jawhar M (2013) Mycorrhizal application as a biocontrol agent against common root rot of barley. Res Biotechnol 4:7–12

    Google Scholar 

  • Arnold WN (1981) Enzymes. In: Arnold WN (ed) Yeast cell envelope: biophysics, biochemistry and ultrastructure II. CRC Press, Boca Raton, FL, pp 1–46

    Google Scholar 

  • Ashford AE, Jacobson JV (1974) Cytochemical localization of phosphatase in barley aleurone cells: the pathway of gibberellic acid induced enzyme release. Planta 120:81–105

    CAS  PubMed  Google Scholar 

  • Azcon-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil borne pathogens. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandte K (eds) Mycorrhizal technology in agriculture. Birkhauser, Basel, pp 187–198

    Google Scholar 

  • Bagyaraj DJ, Mehrotra VS, Suresh CK (2002) Vesicular arbuscular mycorrhizal biofertilizer for tropical forest plants. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Kluwer Academic, Boston, MA, pp 299–311

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Bakkaus E, Collins RN, Morel JL, Gouget B (2006) Anion exchange liquid chromatography inductively coupled plasma-mass spectrometry of the Co2+,Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid. J Chromatogr 1129:208–215

    CAS  Google Scholar 

  • Bansal M, Mukerji KG (1994) Efficacy of root litter as a biofertilizer. Biol Fertil Soils 18:228–230

    Google Scholar 

  • Basha SM (1984) Purification and characterization of an acid phosphatase from peanut (Arachis hypogaea) seed. Can J Bot 62:385–391

    CAS  Google Scholar 

  • Baslam M, Pascual I, Sanchez-Dίaz M, Erro J, Garcίa-Mina J et al (2011) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59:11129–11140

    CAS  PubMed  Google Scholar 

  • Benítez T, Rincón MA, Limón MC, Codón CA (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Alstrom S (2008) Carbon nanomaterial from tea leaves as an anode in lithium secondary batteries. Asian J Exp Sci 22:89–93

    Google Scholar 

  • Bidartondo MI, Redecker D, Hijrl I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    CAS  PubMed  Google Scholar 

  • Blasius D, Feil W, Kottke I, Oberwinkler F (1986) Hartig net formation in fully ensheated ectomycorrhizas. Nordic J Bot 6:837–842

    Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:4. https://doi.org/10.1038/ncomms1046

    Article  CAS  Google Scholar 

  • Bonfante P, Perotto S (1995) Tansley review No. 82. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Google Scholar 

  • Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza. https://doi.org/10.1007/s00572-010-0332-4

    PubMed  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    PubMed  Google Scholar 

  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601

    CAS  PubMed  Google Scholar 

  • Buyer JS, Kratzke MG, Sikora LJ (1993) A method for detection of pseudobactin, the siderophore prodaced by a plant-growth-promoting Psuedomonas strain, in the barley rhizosphere. Appl Environ Microbiol 59:677–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Gülüt KY, Marschner H, Graham RD (1994) Effect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J Plant Nutr 17:1–17

    CAS  Google Scholar 

  • Caris C, Hördt W, Hawkins HJ, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    CAS  Google Scholar 

  • Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–195

    PubMed  Google Scholar 

  • Cavagnaro TR, Gao LL, Smith FA, Smith SE (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475

    Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D et al (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    CAS  Google Scholar 

  • Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H, Wipf D, Botton B (2002) An update on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–175

    CAS  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    CAS  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria. Plant Soil 129:85–92

    Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    CAS  Google Scholar 

  • Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503

    CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soil 44:501–509

    CAS  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulation. In: Varma A, Chincholkar SB (eds) Microbial siderophores, Soil biology. Springer, Berlin, pp 1–42

    Google Scholar 

  • Dhamija SS, Fluri R, Schweingruber ME (1987) Two genes control three alkaline phosphatases in Schizosaccharomyces pombe. Curr Genet 11:467–473

    CAS  Google Scholar 

  • Douds DD, Gadkar JV, Adholeya A (2000) Mass production of VAM fungus biofertilizer. In: Mukerji KG, Singh J, Chamola BP (eds) Mycorrhizal biology. Kluwer Academic, New York, pp 197–214

    Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    CAS  Google Scholar 

  • El-Katathy MH, Gudelj M, Robra KH, Elnaghy MA, Gübitz GM (2001) Characterization of a chitinase and an endo-β-1, 3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56:137–143

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezawa T, Hayatsu M, Saito M (2005) A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant. Mol Plant Microbe Interact 18(10):1046–1053

    CAS  PubMed  Google Scholar 

  • Friberg S (2001) Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on Niger inland delta, Mali, West Africa. CBN:s Skriftserie 3:53–80

    Google Scholar 

  • Gao LL, Knogge W, Delp G, Smith FA, Smith SE (2004) Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. Mol Plant Microbe Interact 17:1103–1113

    CAS  PubMed  Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    PubMed  Google Scholar 

  • Gentili F, Jumpponen A (2006) Potential and possible uses of bacterial and fungal biofertilizers. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 1–28

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 213–252

    Google Scholar 

  • Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know. In: Varma A (ed) Mycorrhiza, 3rd edn. Springer, Heidelberg, pp 3–28

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GC (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Google Scholar 

  • Grünwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol 55:553–566

    PubMed  Google Scholar 

  • Haggag WM (2008) Biotechnological aspects of plant resistant for fungal diseases management. Am Eurasian J Sustain Agric 2:1–18

    Google Scholar 

  • Haggag WM, Mohamed HAA (2007) Biotechnological aspects of microorganisms used in plant biological control. Am Eurasian J Sustain Agric 1:7–12

    Google Scholar 

  • Handelsman J, Stabb VE (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis, 1st edn. Academic Press, London

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, a virulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    CAS  PubMed  Google Scholar 

  • Hart MM, Trevors JT (2005) Microbe management: application of mycorrhyzal fungi in sustainable agriculture. Front Ecol Environ 3:533–539

    Google Scholar 

  • Hasegawa Y, Lynn KR, Brockbank WJ (1976) Isolation and partial characterization of cytoplasmic and wall-bound acid phosphatase from wheat roots. Can J Bot 54:1163–1169

    CAS  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    CAS  PubMed  Google Scholar 

  • Howell RC (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    CAS  PubMed  Google Scholar 

  • Irtwange VS (2006) Application of biological control agents in pre- and postharvest operations. Agricultural Engineering International: the CIGR Ejournal Invited Overview, vol 3, pp 1–12

    Google Scholar 

  • Jakobsen I, Rosendahl I (1991) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    CAS  Google Scholar 

  • Kapoor R, Bhatnagar AK (2007) Attenuation of cadmium toxicity in mycorrhizal Celery (Apium graveolens L.) World J Microbiol Biotechnol 20:1083–1089

    Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239

    Google Scholar 

  • Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer, Berlin

    Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    CAS  Google Scholar 

  • Khetan SK (2001) Microbial pest control. Marcel Dekker, New York, p 300

    Google Scholar 

  • Lambais MR, Mehdy MC (1995) Differential expression of defense-related genes in arbuscular mycorrhiza. Can J Bot 73:S533–S540

    CAS  Google Scholar 

  • Lee YJ, George E (2005) Contributions of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278:361–370

    CAS  Google Scholar 

  • Lewis K, Whipps JM, Cooke RC (1989) Mechanisms of biological disease control with special reference to the case study of Pytium oligandrum as an antagonist. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp 191–217

    Google Scholar 

  • Leyval C, Reid CPP (1991) Utilization of microbial sideropheres by mycorrhizal and non-mycorrhizal pine roots. New Phytol 119:93–98

    CAS  PubMed  Google Scholar 

  • Li AR, Guan KY, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann Bot 112:1089–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Yang J, Sun H, Huang X, Wang R, Zhang KQ (2007) Purification and characterization of a β-1, 3-glucanase from the novel mycoparasite Periconia byssoides. Biotechnol Lett 29:617–622

    CAS  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) growing in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    CAS  Google Scholar 

  • Liu Q, Loganathan P, Hedley MJ, Grace LJ (2008) Effect of mycorrhizal inoculation on rhizosphere properties, phosphorus uptake and growth of pine seedlings treated with and without a phosphate rock fertilizer. J Plant Nutr 31:137–156

    Google Scholar 

  • Malik KA, Hafeez FY, Mirza MS, Hameed S, Rasul G, Bilal R (2005) Rhizospheric plant – microbe interactions for sustainable agriculture. In: Wang YP, Lin M, Tian ZX, Elmerich C, Newton WE (eds) Biological nitrogen fixation, sustainable agriculture and the environment. Springer, Berlin, pp 257–260

    Google Scholar 

  • Marin M (2006) Arbuscular mycorrhizal inoculation in nursery practice. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 289–324

    Google Scholar 

  • Marleen I, Sylvie C, Stéphane D (2011) Methods for large scale production of AM fungi: past, present and future. Mycorrhiza 21:1–16

    Google Scholar 

  • Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–1186

    Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2006) An indigenous drought tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    CAS  PubMed  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    CAS  Google Scholar 

  • Meddad-Hamza A, Beddiar A, Gollotte A, Lemoine MC, Kuszala C, Gianinazzi S (2010) Arbuscular mycorrhizal fungi improve the growth of olive trees and their resistance to transplantation stress. Afr J Biotechnol 9:1159–1167

    Google Scholar 

  • Milagres AMF, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6

    CAS  PubMed  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Mukerji KG, Chamola BP, Singh J (eds) (2000) Mycorrhizal biology. Kluwer Academic, New York

    Google Scholar 

  • Naqvi NS, Mukerji KG (2000) Mycorrhizal technology in plant micropropagation system. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic, New York, pp 217–233

    Google Scholar 

  • Nunes JLD, de Souza PVD, Marodin GAB, Fachinello JC (2010) Effect of arbuscular mycorrhizal fungi and indole butyric acid interaction on vegetative growth of ‘Aldrighi’ peach rootstock seedlings. Cienc Agrotecnol 34:80–86

    Google Scholar 

  • Pal K, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor 2:1117–1142. https://doi.org/10.1094/PHI-A-2006-1117-02. APSnet: 1–25

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370

    PubMed  Google Scholar 

  • Pedregosa AM, Pinto F, Monistrol IF, Laborda F (1991) Regulation of acid and alkaline phosphatases of Cladosporium cucumarinum by inorganic phosphate. Mycol Res 95:720–724

    CAS  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Google Scholar 

  • Peyronel B, Fassi B, Fontana A, Trappe JM (1969) Terminology of mycorrhizae. Mycologia 61:410–411

    Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    CAS  PubMed  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Berlin, pp 1–7

    Google Scholar 

  • Raina S, Chamola BP, Mukerji KG (2000) Evolution of mycorrhiza. In: Mukerji KG, Singh J, Chamola BP (eds) Mycorrhizal biology. Kluwer Academic/Plenum Plublishers, New York, pp 1–25

    Google Scholar 

  • Raja P (2006) Status of endomycorrhizal (AMF) biofertilizer in the global market. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 395–416

    Google Scholar 

  • Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol Biochem 42:1189–1191

    CAS  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Romheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 90:231–234

    Google Scholar 

  • Rooney DC, Prosser JI, Bending GD, Baggs EM, Killham K, Hodge A (2011) Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana c.v. Ghoy. Biomass Bioenerg 35:4605–4612

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 239–256

    Google Scholar 

  • Scheidegger C, Brunner I (1993) Freeze-fracturing for low-temperature scanning electron microscopy of Hartig net in synthesized Picea abies – Hebeloma crustuliniforme and Tricholoma vaccinum ectomycorrhizas. New Phytol 123:123–132

    Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochem 69:112–146

    CAS  Google Scholar 

  • Schreiner PR (2007) Effect of native and non native arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215

    Google Scholar 

  • Schreiner R, Mighara KL, McDaniel II, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1421–1423

    Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    PubMed  Google Scholar 

  • Selvakumar G, Thamizhiniyan P (2011) The effect of the arbuscular mycorrhizal (AM) fungus Glomus intraradices on the growth and yield of chilli (Capsicum annuum L.) under salinity stress. World Appl Sci J 14:1209–1214

    Google Scholar 

  • Sharda JN, Koide RT (2010) Exploring the role of root anatomy in P-mediated control of colonization by arbuscular mycorrhizal fungi. Bot 88:165–173

    CAS  Google Scholar 

  • Sharma MP (2001) Biodiversity and role of potential isolates of VA-mycorrhizae in various plant species of economic value. PhD thesis, Jiwaji University, Gwalior, Central for Mycorrhizal research, TATA Energy Research Institute, New Delhi

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2009) Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can J Microbiol 55:879–886

    CAS  PubMed  Google Scholar 

  • Shi AD, Li Q, Huang J, Yuan L (2013) Influence of arbuscular mycorrhizal fungi on growth, mineral nutrition and chlorogenic acid content of Lonicera confusa seedlings under field conditions. Pedosphere 23:333–339

    CAS  Google Scholar 

  • Shinde SK, Shinde BP, Patale SW (2013) The alleviation of salt stress by the activity of AM fungi in growth and productivity of onion (Allium cepa l.) plant. Int J Life Sci Pharma Res 3:11–15

    Google Scholar 

  • Silvia GA, Trufem SFB, Saggin JOJ, Maia LC (2005) Arbuscular mycorrhizal fungi in a semi-arid copper mining area in Brazil. Mycorrhiza 15:47–53

    Google Scholar 

  • Singh PK (2012) Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: a review. Agric Sci Res J 2:119–125

    Google Scholar 

  • Singh G, Tilak KVBR (2002) Vesicular arbuscular mycorrhizal as bioinoculant. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Kluwer Academic, Boston, MA, pp 312–322

    Google Scholar 

  • Singh S, Pandey A, Palni LMS (2008) Screening of arbuscular mycorrhizal fungal consortia developed from the rhizospheres of natural and cultivated tea plants for growth promotion in tea (Camellia sinensis (L.) O. Kuntze). Pedobiologia 52:119–125

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith FA, Smith SE (1997) Tansley review No. 96. Structural diversity in (vesicular)-arbuscular mycorrhizal symbiosis. New Phytol 137:373–388

    PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    PubMed  Google Scholar 

  • Smith SE, Zhu YG (2001) Application of arbuscular mycorrhizal fungi: potentials and challenges. In: Stephen BP, Hyde KD (eds) Bio-exploitation of filamentous fungi, Fungal diversity research series 6, pp 291–308

    Google Scholar 

  • Smith FW, Rae AL, Hawkesford MJ (2000) Molecular mechanisms of phosphate and sulphate transport in plants. Biochim Biophys Acta 1465:236–245

    CAS  PubMed  Google Scholar 

  • Smits MM, Bonneville S, Haward S, Leake JR (2008) Ectomycorrhizal weathering, a matter of scale. Mineral Mag 72:131–134

    CAS  Google Scholar 

  • Sui XL, Li AR, Chen Y, Guan KY, Zhuo L, Liu YY (2013) Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? Mycorrhiza. http://www.ncbi.nlm.nih.gov/pubmed/24077881 [Epub ahead of print]

    Google Scholar 

  • Takeda N, Kistner C, Kosuta S, Winzer T, Pitzschke A, Groth M et al (2007) Proteases in plant root symbiosis. Phytochem 68:111–121

    CAS  Google Scholar 

  • Tanu, Prakash A, Adholeya A (2006) Potential of arbuscular mycorrhizae in organic farming system. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 223–239

    Google Scholar 

  • Tao G, Liu ZY, Hyde KD, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122

    Google Scholar 

  • Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann Bot 89:783–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Adholeya A (2005) Root organ culture of arbuscular mycorrhizal fungi: step towards reaching sustainable agriculture. Mycorrhiza News 17:15–17

    Google Scholar 

  • Tiwari P, Adholeya A, Prakash A (2004) Commercialization of arbuscular mycorrhizal biofertilizers. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New York, pp 195–203

    Google Scholar 

  • Trappe JM (2005) A.B. Frank and mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza 15:277–281

    PubMed  Google Scholar 

  • Tripathi S, Kamal S, Sherameti I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. In: Varma A, Hock B (eds) Mycorrhizae, 3rd edn. Springer, Heidelberg, pp 281–306

    Google Scholar 

  • van Aarle IM, Plassard C (2010) Spatial distribution of phosphatase activity associated with ectomycorrhizal plants is related with soil type. Soil Biol Biochem 42:324–330

    Google Scholar 

  • Varma A, Hock B (eds) (1998) Mycorrhiza: structure, function, molecular biology, and biotechnology. Springer, New York

    Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma plant pathogen interactions. Soil Biol Biochem 40:1–10

    CAS  Google Scholar 

  • Viterbo A, Inbar J, Hadar Y, Chet I (2007) Plant disease biocontrol and induced resistance via fungal mycoparasites. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, The mycota IV, 2nd edn. Springer, Berlin, pp 127–146

    Google Scholar 

  • Vivas A, Azcon R, Biro B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:577–588

    CAS  PubMed  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Willis A, Rodriguesb BF, Harrisa PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Google Scholar 

  • Woo LS, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Dordrecht, pp 107–130

    Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Google Scholar 

  • Yaseen T, Burni T, Hussain F (2012) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of chickpea (Cicer arietinum) varieties. Int J Agron Plant Prod 3:334–345

    Google Scholar 

  • Yeasmin T, Zaman P, Rahman A, Absar N, Khanum NS (2007) Arbuscular mycorrhizal fungus inoculum production in rice plants. Afr J Agric Res 2:463–467

    Google Scholar 

  • Zhang F, Römheld V, Marschner H (1991) Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron deficient wheat. Soil Sci Plant Nutr 37:671–678

    CAS  Google Scholar 

  • Zhang YF, Wang P, Yang YF, Bi Q, Tian SY, Shi XW (2011) Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline–alkaline soil: Implication on vegetation restoration of extremely degraded land. J Arid Environ 75:773–778

    Google Scholar 

  • Zhu GS, Yu ZN, Gui Y, Liu ZY (2008) A novel technique for isolating orchid mycorrhizal fungi. Fungal Divers 33:123–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, S., Mishra, S.K., Varma, A. (2017). Mycorrhizal Fungi as Control Agents Against Plant Pathogens. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_8

Download citation

Publish with us

Policies and ethics