Skip to main content

Automaton (Semi)groups: Wang Tilings and Schreier Tries

  • Chapter
  • First Online:
Sequences, Groups, and Number Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

Groups and semigroups generated by Mealy automata were formally introduced in the early 1960s. They revealed their full potential over the years, by contributing to important conjectures in group theory. In the current chapter, we intend to provide various combinatorial and dynamical tools to tackle some decision problems all related to some extent to the growth of automaton (semi)groups. In the first part, we consider Wang tilings as a major tool in order to study and understand the behavior of automaton (semi)groups. There are various ways to associate a Wang tileset with a given complete and deterministic Mealy automaton and various ways to interpret the induced Wang tilings. We describe some of these fruitful combinations, as well as some promising research opportunities. In the second part, we detail some toggle switch between a classical notion from group theory—Schreier graphs—and some properties of an automaton group about its growth or the growth of its monogenic subgroups. We focus on polynomial-activity automata and on reversible automata, which are somehow diametrically opposed families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This latter denomination is introduced for the first time in this chapter, motivated in Section 10.3.2.

References

  1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness problem for automaton (semi)groups. Int. J. Algebra Comput. 22(6), 1–26 (2012)

    Article  MathSciNet  Google Scholar 

  2. Alešin, S.: Finite automata and the Burnside problem for periodic groups. Mat. Zametki 11, 319–328 (1972)

    Google Scholar 

  3. Bartholdi, L., Grigorchuk, R.I., Šuniḱ, Z.: Handbook of Algebra, vol. 3, chap. Branch groups, pp. 989–1112. Elsevier BV (2003)

    Google Scholar 

  4. Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc. 66, 72 (1966)

    Google Scholar 

  5. Bondarenko, I., Bondarenko, N., Sidki, S., Zapata, F.: On the conjugacy problem for finite-state automorphisms of regular rooted trees. Groups Geom. Dyn. 7(2), 323–355 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bondarenko, I.V.: Growth of Schreier graphs of automaton groups. Math. Ann. 354(2), 765–785 (2012)

    Article  MathSciNet  Google Scholar 

  7. Brough, T., Cain, A.J.: Automaton semigroup constructions. Semigroup Forum 90(3), 763–774 (2015)

    Article  MathSciNet  Google Scholar 

  8. Brough, T., Cain, A.J.: Automaton semigroups: new constructions results and examples of non-automaton semigroups. Theor. Comput. Sci. 674, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  9. Burnside, W.: On an unsettled question in the theory of discontinuous groups. Q. J. Math. 33, 230–238 (1902)

    Google Scholar 

  10. Cain, A.: Automaton semigroups. Theor. Comput. Sci. 410, 5022–5038 (2009)

    Article  MathSciNet  Google Scholar 

  11. Culik II, K.: An aperiodic set of 13 Wang tiles. Discret. Math. 160, 245–251 (1996)

    Article  MathSciNet  Google Scholar 

  12. Culik II, K., Pachl, J.K., Yu, S.: On the limit sets of cellular automata. SIAM J. Comput. 18(4), 831–842 (1989)

    Article  MathSciNet  Google Scholar 

  13. D’Angeli, D., Godin, T., Klimann, I., Picantin, M., Rodaro, E.: Boundary action of automaton groups without singular points and Wang tilings (2016). ArXiv:1604.07736

    Google Scholar 

  14. D’Angeli, D., Rodaro, E.: A geometric approach to (semi)-groups defined by automata via dual transducers. Geom. Dedicata 174-1, 375–400 (2015)

    Article  MathSciNet  Google Scholar 

  15. Dehornoy, P.: Garside and quadratic normalisation: a survey. In: 19th International Conference on Developments in Language Theory (DLT 2015). Lecture Notes in Computer Science, vol. 9168, pp. 14–45 (2015)

    Chapter  Google Scholar 

  16. Dehornoy, P., Guiraud, Y.: Quadratic normalization in monoids. Int. J. Algebra Comput. 26(5), 935–972 (2016)

    Article  MathSciNet  Google Scholar 

  17. Dehornoy, P., et al.: Foundations of Garside theory. Eur. Math. Soc. Tracts in Mathematics, vol. 22 (2015) http://www.math.unicaen.fr/ garside/Garside.pdf

    Google Scholar 

  18. Delacourt, M., Ollinger, N.: Permutive one-way cellular automata and the finiteness problem for automaton groups. In: 13th Conference on Computability in Europe (CiE 2017). Lecture Notes in Computer Science, vol. 10307, pp. 234–245 (2017)

    Chapter  Google Scholar 

  19. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA (1992)

    Google Scholar 

  20. Gawron, P.W., Nekrashevych, V.V., Sushchansky, V.I.: Conjugation in tree automorphism groups. Int. J. Algebra Comput. 11(5), 529–547 (2001)

    Article  MathSciNet  Google Scholar 

  21. Gillibert, P.: The finiteness problem for automaton semigroups is undecidable. Int. J. Algebra Comput. 24(1), 1–9 (2014)

    Article  MathSciNet  Google Scholar 

  22. Gillibert, P.: Simulating Turing machines with invertible Mealy automata (2017, in preparation)

    Google Scholar 

  23. Glasner, Y., Mozes, S.: Automata and square complexes. Geom. Dedicata 111, 43–64 (2005)

    Article  MathSciNet  Google Scholar 

  24. Gluškov, V.: Abstract theory of automata. Uspehi Mat. Nauk 16(5), 3–62 (1961)

    Google Scholar 

  25. Godin, T., Klimann, I.: Connected reversible Mealy automata of prime size cannot generate infinite Burnside groups. In: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). LIPIcs, vol. 58, pp. 44:1–44:14 (2016)

    Google Scholar 

  26. Godin, T., Klimann, I., Picantin, M.: On torsion-free semigroups generated by invertible reversible Mealy automata. In: 9th International Conference on Language and Automata Theory and Applications (LATA). Lecture Notes in Computer Science, vol. 8977, pp. 328–339 (2015)

    MATH  Google Scholar 

  27. Golod, E.S.: On nil-algebras and finitely residual groups. Izv. Akad. Nauk SSSR. Ser. Mat. 28, 273–276 (1964)

    Google Scholar 

  28. Golod, E.S., Shafarevich, I.: On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28, 261–272 (1964)

    Google Scholar 

  29. Grigorchuk, R.I.: On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen. 14(1), 53–54 (1980)

    Google Scholar 

  30. Grigorchuk, R.I.: Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48(5), 939–985 (1984)

    Google Scholar 

  31. Grigorchuk, R.I.: New Horizons in pro-p Groups, chap. Just Infinite Branch Groups, pp. 121–179. Birkhäuser, Boston, MA (2000)

    Chapter  Google Scholar 

  32. Grigorchuk, R.I., Nekrashevich, V.V., Sushchanskiı̆, V.I.: Automata, dynamical systems, and groups. Tr. Mat. Inst. Steklova 231, 134–214 (2000)

    Google Scholar 

  33. Grigorchuk, R.I., Nekrashevych, V.V.: Amenable actions of non-amenable groups. J. Math. Sci. 140(3), 391–397 (2007)

    Article  MathSciNet  Google Scholar 

  34. Hoffmann, M.: Automatic semigroups. Ph.D. thesis, Univ Leicester (2001)

    Google Scholar 

  35. Jeandel, E., Rao, M.: An aperiodic set of 11 Wang tiles (2015). ArXiv:1506.06492

    Google Scholar 

  36. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21(3), 571–586 (1992)

    Article  MathSciNet  Google Scholar 

  37. Kari, J.: A small aperiodic set of Wang tiles. Discret. Math. 160, 259–264 (1996)

    Article  MathSciNet  Google Scholar 

  38. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: 33rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2008). LNCS, vol. 5162, pp. 419–430 (2008)

    Google Scholar 

  39. Klimann, I.: Automaton semigroups: the two-state case. Theory Comput. Syst. 1–17 (2014)

    Google Scholar 

  40. Klimann, I.: On level-transitivity and exponential growth. Semigroup Forum, pp. 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  41. Klimann, I., Picantin, M., Savchuk, D.: A connected 3-state reversible Mealy automaton cannot generate an infinite burnside group. In: 19th International Conference on Developments in Language Theory (DLT). Lecture Notes in Computer Science, vol. 9168, pp. 313–325 (2015)

    Chapter  Google Scholar 

  42. Klimann, I., Picantin, M., Savchuk, D.: Orbit automata as a new tool to attack the order problem in automaton groups. J. Algebra 445, 433–457 (2016)

    Article  MathSciNet  Google Scholar 

  43. Le Gloannec, B.: The 4-way deterministic periodic domino problem is undecidable. HAL:00985482 (2014)

    Google Scholar 

  44. Mann, A.: How Groups Grow. Lecture Note Series, vol. 395. London Mathematical Society (2012)

    Google Scholar 

  45. Milnor, J.: Problem 5603. Am. Math. Mon. 75(6), 685–686 (1968)

    Google Scholar 

  46. Nekrashevych, V.V.: Self-Similar Groups. Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence, RI (2005)

    Google Scholar 

  47. Picantin, M.: Automatic semigroups vs automaton semigroups (2016). ArXiv:1609.09364

    Google Scholar 

  48. Picantin, M.: Automates, (semi)groupes, dualités. Habilitation à diriger des recherches, Univ. Paris Diderot (2017)

    Google Scholar 

  49. Savchuk, D., Vorobets, Y.: Automata generating free products of groups of order 2. J. Algebra 336-1(1), 53–66 (2011)

    Article  MathSciNet  Google Scholar 

  50. Serre, J.P.: Trees. Springer, Berlin (1980)

    Book  Google Scholar 

  51. Sidki, S.: Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. 100(1), 1925–1943 (2000)

    Article  MathSciNet  Google Scholar 

  52. Silva, P.V., Steinberg, B.: On a class of automata groups generalizing lamplighter groups. Int. J. Algebra Comput. 15(5-6), 1213–1234 (2005)

    Article  MathSciNet  Google Scholar 

  53. Šuniḱ, Z., Ventura, E.: The conjugacy problem in automaton groups is not solvable. J. Algebra 364(0), 148–154 (2012)

    Google Scholar 

  54. Vaughan-Lee, M.: The restricted Burnside problem. London Mathematical Society Monographs. New Series, vol. 8. Oxford University Press, Oxford (1993)

    Google Scholar 

  55. Wang, H.: Proving theorems by pattern recognition, II. Bell Syst. Tech. J. 40(1), 1–41 (1961)

    Article  Google Scholar 

  56. Zelmanov, E.I.: Solution of the restricted Burnside problem for groups of odd exponent. Izv. Akad. Nauk SSSR Ser. Mat. 54(1), 42–59, 221 (1990)

    Article  MathSciNet  Google Scholar 

  57. Zelmanov, E.I.: Solution of the restricted Burnside problem for 2-groups. Matematicheskiı̆ Sbornik 182(4), 568–592 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Klimann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimann, I., Picantin, M. (2018). Automaton (Semi)groups: Wang Tilings and Schreier Tries. In: Berthé, V., Rigo, M. (eds) Sequences, Groups, and Number Theory. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-69152-7_10

Download citation

Publish with us

Policies and ethics