Skip to main content

Biomarkers

  • Chapter
  • First Online:
Sport and Physical Activity in the Heat

Abstract

Biological markers (biomarkers) measured in blood and urine samples may be useful as indicators of increased susceptibility to, onset and severity of, and recovery from exertional heat illness (EHI). Currently, however, there are no biomarkers that can be used to confidently predict susceptibility to, severity of, and recovery from EHI. Markers of hydration state, muscle damage, and immune function have been studied and may be useful with further validation. A hypohydrated state is a known risk factor for EHI and thus measuring hydration state via markers such as urine color, specific gravity, and osmolality, or plasma osmolality may be helpful in assessing risk for EHI. Markers of muscle/tissue damage and ensuing inflammation such as creatine kinase and inflammatory cytokines may indicate the severity of and recovery from EHI. Novel markers such as heat shock proteins, cardiac troponin, and coagulation factors have also been explored as markers of tissue damage and repair during EHI pathophysiology. Further research is required to validate markers, and approaches should focus on using multiple biomarkers at once since current biomarker candidates for EHI measured individually will not be informative about EHI specifically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nose H, Mack GW, Shi X, Nadel ER. Ch. 11. Shift in body fluid compartments after dehydration in humans. In: Marriott B, editor. Fluid replacement and heat stress. Washington, DC: Institute of Medicine (US) Committee on Military Nutrition Research; 1994.

    Google Scholar 

  2. Senay LC Jr, Pivarnik JM. Fluid shifts during exercise. Exerc Sport Sci Rev. 1985;13:335–87.

    Article  PubMed  Google Scholar 

  3. Shirreffs SM. Markers of hydration status. Eur J Clin Nutr. 2003;57(Suppl 2):S6–9.

    Article  PubMed  Google Scholar 

  4. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11 Suppl):S52–69.

    Article  PubMed  Google Scholar 

  5. Malm C, Nyberg P, Engström M, Sjödin B, Lenkei R, Ekblom B, Lundberg I. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol. 2000;529(Pt 1):243–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mair J, Koller A, Artner-Dworzak E, Haid C, Wicke K, Judmaier W, Puschendorf B. Effects of exercise on plasma myosin heavy chain fragments and MRI of skeletal muscle. J Appl Physiol (1985). 1992;72(2):656–63.

    Article  CAS  Google Scholar 

  7. Eston RG, Finney S, Baker S, Baltzopoulos V. Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise. J Sports Sci. 1996;14(4):291–9.

    Article  CAS  PubMed  Google Scholar 

  8. Newham DJ, Jones DA, Clarkson PM. Repeated high-force eccentric exercise: effects on muscle pain and damage. J Appl Physiol (1985). 1987;63(4):1381–6.

    Article  CAS  Google Scholar 

  9. Cleary MA, Sweeney LA, Kendrick ZV, Sitler MR. Dehydration and symptoms of delayed-onset muscle soreness in hyperthermic males. J Athl Train. 2005;40(4):288–97.

    PubMed  PubMed Central  Google Scholar 

  10. Crenshaw AG, Thornell LE, Friden J. Intramuscular pressure, torque and swelling for the exercise-induced sore vastus lateralis muscle. Acta Physiol Scand. 1994;152(3):265–77.

    Article  CAS  PubMed  Google Scholar 

  11. Nosaka K, Clarkson PM. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc. 1996;28(8):953–61.

    Article  CAS  PubMed  Google Scholar 

  12. Kanda K, Sugama K, Sakuma J, Kawakami Y, Suzuki K. Evaluation of serum leaking enzymes and investigation into new biomarkers for exercise-induced muscle damage. Exerc Immunol Rev. 2014;20:39–54.

    PubMed  Google Scholar 

  13. Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev. 1999;5:5–21.

    CAS  PubMed  Google Scholar 

  14. Byrnes WC, Clarkson PM, White JS, Hsieh SS, Frykman PN, Maughan RJ. Delayed onset muscle soreness following repeated bouts of downhill running. J Appl Physiol (1985). 1985;59(3):710–5.

    Article  CAS  Google Scholar 

  15. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992;24(5):512–20.

    CAS  PubMed  Google Scholar 

  16. Schwane JA, Johnson SR, Vandenakker CB, Armstrong RB. Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running. Med Sci Sports Exerc. 1983;15(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sorichter S, Koller A, Haid C, Wicke K, Judmaier W, Werner P, Raas E. Light concentric exercise and heavy eccentric muscle loading: effects on CK, MRI and markers of inflammation. Int J Sports Med. 1995;16(5):288–92.

    Article  CAS  PubMed  Google Scholar 

  18. Nosaka K, Clarkson PM. Effect of eccentric exercise on plasma enzyme activities previously elevated by eccentric exercise. Eur J Appl Physiol Occup Physiol. 1994;69(6):492–7.

    Article  CAS  PubMed  Google Scholar 

  19. Saxton JM, Donnelly AE. Light concentric exercise during recovery from exercise-induced muscle damage. Int J Sports Med. 1995;16(6):347–51.

    Article  CAS  PubMed  Google Scholar 

  20. Havas E, Komulainen J, Vihko V. Exercise-induced increase in serum creatine kinase is modified by subsequent bed rest. Int J Sports Med. 1997;18(8):578–82.

    Article  CAS  PubMed  Google Scholar 

  21. Cannon JG, Orencole SF, Fielding RA, Meydani M, Meydani SN, Fiatarone MA, et al. Acute phase response in exercise: interaction of age and vitamin E on neutrophils and muscle enzyme release. Am J Physiol. 1990;259(6 Pt 2):R1214–9.

    CAS  PubMed  Google Scholar 

  22. Pizza FX, Mitchell JB, Davis BH, Starling RD, Holtz RW, Bigelow N. Exercise-induced muscle damage: effect on circulating leukocyte and lymphocyte subsets. Med Sci Sports Exerc. 1995;27(3):363–70.

    CAS  PubMed  Google Scholar 

  23. Pyne DB, Smith JA, Baker MS, Telford RD, Weidemann MJ. Neutrophil oxidative activity is differentially affected by exercise intensity and type. J Sci Med Sport. 2000;3(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol (1985). 1999;87(4):1360–7.

    Article  CAS  Google Scholar 

  25. Pedersen BK. Special feature for the Olympics: effects of exercise on the immune system: exercise and cytokines. Immunol Cell Biol. 2000;78(5):532–5.

    Article  CAS  PubMed  Google Scholar 

  26. Croisier JL, Camus G, Venneman I, Deby-Dupont G, Juchmès-Ferir A, Lamy M, et al. Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle Nerve. 1999;22(2):208–12.

    Article  CAS  PubMed  Google Scholar 

  27. O'Connor PJ, Cook DB. Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev. 1999;27:119–66.

    PubMed  Google Scholar 

  28. Walsh NP, Oliver SJ. Exercise, immune function and respiratory infection: an update on the influence of training and environmental stress. Immunol Cell Biol. 2016;94(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  29. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol (1985). 2016. https://doi.org/10.1152/japplphysiol.00622.2016. (In Press).

  30. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  31. Gleeson M, Bishop N, Walsh NP. Exercise immunology. Abingdon: Routledge; 2013.

    Google Scholar 

  32. Dokladny K, Zuhl MN, Moseley PL. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol (1985). 2016;120(6):692–701.

    Article  CAS  Google Scholar 

  33. Fortes MB, Di Felice U, Dolci A, Junglee NA, Crockford MJ, West L, et al. Muscle-damaging exercise increases heat strain during subsequent exercise heat stress. Med Sci Sports Exerc. 2013;45(10):1915–24.

    Article  CAS  PubMed  Google Scholar 

  34. Kuennen M, Gillum T, Dokladny K, Bedrick E, Schneider S, Moseley P. Thermotolerance and heat acclimation may share a common mechanism in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(2):R524–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58(2–3):193–210.

    Article  CAS  PubMed  Google Scholar 

  36. Shephard RJ. Immune changes induced by exercise in an adverse environment. Can J Physiol Pharmacol. 1998;76(5):539–46.

    Article  CAS  PubMed  Google Scholar 

  37. Walsh NP, Whitham M. Exercising in environmental extremes: a greater threat to immune function? Sports Med. 2006;36(11):941–76.

    Article  PubMed  Google Scholar 

  38. Cross MC, Radomski MW, VanHelder WP, Rhind SG, Shephard RJ. Endurance exercise with and without a thermal clamp: effects on leukocytes and leukocyte subsets. J Appl Physiol (1985). 1996;81(2):822–9.

    Article  CAS  Google Scholar 

  39. Rhind SG, Gannon GA, Shephard RJ, Buguet A, Shek PN, Radomski MW. Cytokine induction during exertional hyperthermia is abolished by core temperature clamping: neuroendocrine regulatory mechanisms. Int J Hyperth. 2004;20(5):503–16.

    Article  CAS  Google Scholar 

  40. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar FS, Shephard RJ, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev. 2011;17:64–103.

    PubMed  Google Scholar 

  41. Severs Y, Brenner I, Shek PN, Shephard RJ. Effects of heat and intermittent exercise on leukocyte and sub-population cell counts. Eur J Appl Physiol Occup Physiol. 1996;74(3):234–45.

    Article  CAS  PubMed  Google Scholar 

  42. Zurawlew MJ, Walsh NP, Fortes MB, Potter C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand J Med Sci Sports. 2016;26(7):745–54.

    Article  CAS  PubMed  Google Scholar 

  43. Scoon GS, Hopkins WG, Mayhew S, Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport. 2007;10(4):259–62.

    Article  PubMed  Google Scholar 

  44. Hubbard RW, Criss RE, Elliott LP, Kelly C, Matthew WT, Bowers WD, et al. Diagnostic significance of selected serum enzymes in a rat heatstroke model. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(2):334–9.

    CAS  PubMed  Google Scholar 

  45. Leon LR. Pathophysiology of heat stroke. In: Granger DN, Granger J, editors. Colloquium series on integrated systems physiology: from molecule to function to disease. San Rafael, CA: Morgan & Claypool Life Sciences; 2015.

    Google Scholar 

  46. Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002;346(25):1978–88.

    Article  CAS  PubMed  Google Scholar 

  47. Leon LR, Helwig BG. Heat stroke: role of the systemic inflammatory response. J Appl Physiol (1985). 2010;109(6):1980–8.

    Article  CAS  Google Scholar 

  48. Lee EC, Muñoz CX, McDermott BP, Beasley KN, Yamamoto LM, Hom LL, et al. Extracellular and cellular Hsp72 differ as biomarkers in acute exercise/environmental stress and recovery. Scand J Med Sci Sports. 2017;27(1):66–74.

    Article  PubMed  Google Scholar 

  49. Quinn CM, Duran RM, Audet GN, Charkoudian N, Leon LR. Cardiovascular and thermoregulatory biomarkers of heat stroke severity in a conscious rat model. J Appl Physiol (1985). 2014;117(9):971–8.

    Article  Google Scholar 

Download references

Disclaimer

The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Choung-Hee Lee PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, E.CH., Leon, L.R., Adams, W.B., Arent, S.M., Maresh, C.M., Walsh, N.P. (2018). Biomarkers. In: Casa, D. (eds) Sport and Physical Activity in the Heat. Springer, Cham. https://doi.org/10.1007/978-3-319-70217-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70217-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70216-2

  • Online ISBN: 978-3-319-70217-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics