Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 476 Accesses

Abstract

The drive for miniaturization has pushed nanotechnology to the forefront of the materials science community. Perhaps the most famous example has been Moore’s law, the prediction by G.E. Moore that the number of transistors in an integrated circuit would double every 2 years. However, the desire for devices with real-world applications and increasingly small dimensions extends far past transistors, as miniaturization has become a key aspect across many subfields of science.

As device dimensions push into the nanoscale, one of the main focuses of the research community has been on the interactions of light and matter. Optical nanostructures are of significant interest across a wide range of technological subfields such as photovoltaics, biomedicine, catalysis, sensing and detection, laser optics, and optoelectronics.

As devices have pushed deeper and deeper into the nanoscale, they have encountered new regimes where complex physical phenomena that were dormant at the micro and macroscales rear their heads. The result has been an increased research effort into nanoscale optical effects that has resulted in parallel endeavors in the fields of nanoscale fabrication, and tremendous advances have been made in terms of colloidal synthesis, lithography, thin film deposition, self-assembly, and focused ion beam (FIB) techniques. As the control over materials in fabrication has increased, so has the precision required for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38, 114–116 (1965)

    Google Scholar 

  2. Peercy, P.S.: The drive to miniaturization. Nature 406, 1023–1026 (2000)

    Article  Google Scholar 

  3. Huang, Y., et al.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001)

    Article  ADS  Google Scholar 

  4. Jensen, K.F.: Microreaction engineering—is small better? Chem. Eng. Sci. 56, 293–303 (2001)

    Article  Google Scholar 

  5. Skumryev, V., et al.: Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003)

    Article  ADS  Google Scholar 

  6. Dittrich, P.S., Manz, A.: Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210–218 (2006)

    Article  Google Scholar 

  7. Tian, B., et al.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)

    Article  ADS  Google Scholar 

  8. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  9. Mishchenko, E.G., Shytov, A.V., Silvestrov, P.G.: Guided plasmons in graphene p-n junctions. Phys. Rev. Lett. 104, 156806 (2010)

    Article  ADS  Google Scholar 

  10. Bernardi, M., Palummo, M., Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013)

    Article  ADS  Google Scholar 

  11. West, J.L., Halas, N.J.: Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003)

    Article  Google Scholar 

  12. De Angelis, F., et al.: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photon. 5, 682–687 (2011)

    Article  ADS  Google Scholar 

  13. Kamat, P.V.: Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002)

    Article  Google Scholar 

  14. Kamat, P.V.: Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834–2860 (2007)

    Article  Google Scholar 

  15. Tilley, S.D., Cornuz, M., Sivula, K., Grätzel, M.: Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. 122, 6549–6552 (2010)

    Article  Google Scholar 

  16. O’Carroll, D.M., Hofmann, C.E., Atwater, H.A.: Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv. Mater. 22, 1223–1227 (2010)

    Article  Google Scholar 

  17. Novotny, L., van Hulst, N.: Antennas for light. Nat. Photon. 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  18. Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011)

    Article  ADS  Google Scholar 

  19. Tredicucci, A., et al.: A multiwavelength semiconductor laser. Nature 396, 350–353 (1998)

    Article  ADS  Google Scholar 

  20. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G., Priolo, F.: Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000). ISSN: 0028-0836

    Article  ADS  Google Scholar 

  21. Oulton, R.F., et al.: Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). ISSN: 0028-0836

    Article  ADS  Google Scholar 

  22. Arsenault, A., et al.: Towards the synthetic all-optical computer: science fiction or reality? J. Mater. Chem. 14, 781–794 (2004)

    Article  Google Scholar 

  23. Qi, M., et al.: A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004)

    Article  ADS  Google Scholar 

  24. Pillai, S., Catchpole, K.R., Trupke, T., Zhang, G., Zhao, J.: Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl. Phys. Lett. 88 (2006). ISSN: 0003-6951. https://doi.org/10.1063/1.2195695

  25. Di Benedetto, F., et al.: Patterning of light-emitting conjugated polymer nanofibres. Nat. Nanotechnol. 3, 614–619 (2008)

    Article  Google Scholar 

  26. Kish, L.B.: End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 305, 144–149 (2002)

    Article  ADS  Google Scholar 

  27. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010). ISSN:1749-4885

    Article  ADS  Google Scholar 

  28. Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J.: Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012)

    Article  ADS  Google Scholar 

  29. Konstantatos, G., Sargent, E.H.: Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010). ISSN:1748-3387

    Article  ADS  Google Scholar 

  30. Mark, A.G., Gibbs, J.G., Lee, T.-C., Fischer, P.: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013). ISSN: 14761122

    Article  ADS  Google Scholar 

  31. Milliron, D.J., Buonsanti, R., Llordes, A., Helms, B.A.: Constructing functional mesostructured materials from colloidal nanocrystal building blocks. Acc. Chem. Res. 47, 236–246 (2014). ISSN: 0001-4842

    Article  Google Scholar 

  32. Akselrod, G.M., et al.: Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014). ISSN: 1749-4885

    Article  ADS  Google Scholar 

  33. Hachtel, J.A., et al.: Gold nanotriangles decorated with superparamagnetic iron oxide nanoparticles. Faraday Discuss. 191, 215–227 (2016)

    Article  ADS  Google Scholar 

  34. Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  ADS  Google Scholar 

  35. Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006). ISSN: 0036-8075, 1095-9203

    Google Scholar 

  36. Haberfehlner, G., et al.: Correlated 3d nanoscale mapping and simulation of coupled plasmonic nanoparticles. Nano Lett. 15, 7726–7730 (2015). ISSN: 1530-6984

    Article  ADS  Google Scholar 

  37. Bosman, M., et al.: Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. Sci. Rep. 4 (2014). ISSN: 2045-2322. https://doi.org/10.1038/srep05537. http://www.nature.com/articles/srep05537

  38. Wang, H., You, T., Shi, W., Li, J., Guo, L.: Au/TiO2/Au as a plasmonic coupling photocatalyst. J. Phys. Chem. C 116, 6490–6494 (2012). ISSN: 1932-7447

    Article  Google Scholar 

  39. Nishinaga, J., Kawaharazuka, A., Onomitsu, K., Horikoshi, Y.: High-absorption-efficiency superlattice solar cells by excitons. Jpn. J. Appl. Phys. 52, 112302 (2013). ISSN: 1347-4065

    Article  ADS  Google Scholar 

  40. Zhang, X., et al.: Optical absorption in InP/InGaAs/InP double-heterostructure nanopillar arrays for solar cells. Appl. Phys. Lett. 104, 061110 (2014). ISSN: 0003-6951, 1077-3118

    Google Scholar 

  41. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, selfassembly, and applications. Chem. Rev. 110, 3479–3500 (2010)

    Article  Google Scholar 

  42. Tan, H., Santbergen, R., Smets, A.H.M., Zeman, M.: Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12, 4070–4076 (2012). ISSN: 1530-6984

    Article  ADS  Google Scholar 

  43. Kuzyk, A., et al.: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012). ISSN: 00280836

    Article  ADS  Google Scholar 

  44. Teulle, A., et al.: Multimodal plasmonics in fused colloidal networks. Nat. Mater. 14, 87–94 (2015). ISSN: 14761122

    Article  ADS  Google Scholar 

  45. Matsui, S., et al.: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 18, 3181–3184 (2000)

    Article  Google Scholar 

  46. Kuttge, M., García de Abajo, F.J., Polman, A.: Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett. 10, 1537–1541 (2009). ISSN: 1530-6984

    Google Scholar 

  47. Kuttge, M., Vesseur, E.J.R., Polman, A.: Fabry-Pérot resonators for surface plasmon polaritons probed by cathodoluminescence. Appl. Phys. Lett. 94, 183104 (2009). ISSN: 0003-6951, 1077-3118

    Google Scholar 

  48. Santoro, F., et al.: Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS Nano 8, 6713–6723 (2014)

    Article  Google Scholar 

  49. Yetisen, A.K., et al.: Art on the nanoscale and beyond. Adv. Mater. 28(9): 1724–1742 (2015)

    Article  Google Scholar 

  50. Ferry, V.E., Polman, A., Atwater, H.A.: Modeling light trapping in nanostructured solar cells. ACS Nano 5, 10055–10064 (2011)

    Article  Google Scholar 

  51. Llordés, A., Garcia, G., Gazquez, J., Milliron, D.J.: Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013)

    Article  ADS  Google Scholar 

  52. Stockman, M.I.: Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011)

    Article  Google Scholar 

  53. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ratanatawanate, C., Tao, Y., Balkus Jr., K.J.: Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J. Phys. Chem. C 113, 10755–10760 (2009)

    Article  Google Scholar 

  55. Li, C., et al.: Grain-boundary-enhanced carrier collection in CdTe solar cells. Phys. Rev. Lett. 112, 156103 (2014)

    Article  ADS  Google Scholar 

  56. Ehrenreich, H., Cohen, M.H.: Self-consistent field approach to the many-electron problem. Phys. Rev. 115, 786–790 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Adler, S.L.: Quantum theory of the dielectric constant in real solids. Phys. Rev. 126, 413–420 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Wiser, N.: Dielectric constant with local field effects included. Phys. Rev. 129, 62–69 (1963)

    Article  ADS  MATH  Google Scholar 

  59. Koch, S.W., Kira, M., Khitrova, G., Gibbs, H.: Semiconductor excitons in new light. Nat. Mater. 5, 523–531 (2006)

    Article  ADS  Google Scholar 

  60. Ponseca Jr., C.S., et al.: Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014)

    Article  Google Scholar 

  61. Schmidt-Mende, L., MacManus-Driscoll, J.L.: Zno-nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007)

    Article  Google Scholar 

  62. Bhattacharya, A., Bhattacharya, S., Das, G.: Band gap engineering by functionalization of BN sheet. Phys. Rev. B 85, 035415 (2012)

    Article  ADS  Google Scholar 

  63. Poplawsky, J.D., Nishikawa, A., Fujiwara, Y., Dierolf, V.: Defect roles in the excitation of Eu ions in Eu: GaN. Opt. Exp. 21, 30633–30641 (2013)

    Article  ADS  Google Scholar 

  64. Drude, P.: Zur elektronentheorie der metalle. Ann. Phys. 306, 566–613 (1900)

    Article  MATH  Google Scholar 

  65. MacDonald, K.F., Sámson, Z.L., Stockman, M.I., Zheludev, N.I.: Ultrafast active plasmonics. Nat. Photon. 3, 55–58 (2009). ISSN: 1749-4885

    Article  ADS  Google Scholar 

  66. Kuttge, M., et al.: Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Phys. Rev. B 79, 113405 (2009)

    Article  ADS  Google Scholar 

  67. Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)

    Article  ADS  Google Scholar 

  68. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    Article  ADS  Google Scholar 

  69. Walther, R., et al.: Coupling of Surface-plasmon-polariton-hybridized cavity modes between submicron slits in a thin gold film. ACS Photon. 3, 836–843 (2016)

    Article  Google Scholar 

  70. Gong, S., et al.: Electron beam excitation of surface plasmon polaritons. Opt. Exp. 22, 19252–19261 (2014)

    Article  ADS  Google Scholar 

  71. Yamamoto, N., Suzuki, T.: Conversion of surface plasmon polaritons to light by a surface step. Appl. Phys. Lett. 93, 093114 (2008)

    Article  ADS  Google Scholar 

  72. Schoen, D.T., Atre, A.C., García-Etxarri, A., Dionne, J.A., Brongersma, M.L.: Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS. Nano Lett. 15, 120–126 (2014)

    Article  ADS  Google Scholar 

  73. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908)

    Article  MATH  Google Scholar 

  74. Kreibig, U., in collab. with Vollmer, M.: Optical Properties of Metal Clusters. Springer Series in Materials Science, vol. 25, 532 pp. Springer, Berlin, New York (1995). ISBN: 0-387-57836-6

    Google Scholar 

  75. Pellegrini, G., Mattei, G., Bello, V., Mazzoldi, P.: Interacting metal nanoparticles: optical properties from nanoparticle dimers to core-satellite systems. Mater. Sci. Eng. C 27, 1347–1350 (2007)

    Article  Google Scholar 

  76. Stockman, M.I.: Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  77. Willets, K.A., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  ADS  Google Scholar 

  78. Boltasseva, A., Atwater, H.A.: Low-loss plasmonic metamaterials. Science 331, 290–291 (2011)

    Article  ADS  Google Scholar 

  79. Brongersma, M.L., Shalaev, V.M.: The case for plasmonics. Science 328, 440–441 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hachtel, J.A. (2018). Introduction. In: The Nanoscale Optical Properties of Complex Nanostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70259-9_1

Download citation

Publish with us

Policies and ethics