Skip to main content

Nanomaterials: Properties, Toxicity, Safety, and Drug Delivery

  • Chapter
  • First Online:
Nanotechnology Applied To Pharmaceutical Technology

Abstract

The nanotechnology field has considerably increased in recent years, playing an important role in the pharmaceutical industry. However, this emerging science presents uncertainties and shortcomings regarding toxicological effects in human and ecological systems. It was possible to achieve a range of drugs and cosmetics that have specific properties using nanotechnology . In drug delivery systems, nanotechnology has demonstrated great potential because of its ability to induce desired pharmacological responses. The nanocomposites used in the production of sunscreens provide effective protection against damages caused by exposure to ultraviolet radiation. However, recent studies have shown the toxicity of some UV filters to health and the environment. These studies demonstrated that the compounds of sunscreens are capable of reaching the marine environment after released from human skin during the bath through water treatment plants. It is important to know the physical characteristics and chemical composition of the working nanomaterial before starting a research because that information will be relevant keys to a better understanding about the risks evaluation of the study object. The comparisons of biological/toxicological data between nanomaterials should be evaluated by a detailed physical characterization of each material in order to demonstrate similarities and differences between all substances. Factors such as size, aggregation/agglomeration state, aggregates/clusters, surface area and shape of the nanomaterials should be considered for the risk assessments they may cause to humans and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott LC, Maynard AD (2010) Exposure assessment approaches for engineered nanomaterials. Risk Anal 30(11):1634–1644

    Google Scholar 

  • Abdelhalim MAK (2011) Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels. Lipids Health Dis 10(1):233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Rodrigo MAM, Moulick A, Heger Z, Kopel P, Zítka O, Adam V, Lukatkin AS, Duarte AC, Pereira E, Kizek R (2016) Transport phenomena of nanoparticles in plants and animals/humans. Environ Res 151:233–243

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Mun GLK, Hande MP, Valiyaveettil S (2008a) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008b) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    Article  CAS  PubMed  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2015) Toxicity of nanoparticles and an overview of current experimental models. Iran biomed J 20(1):1–11

    PubMed  Google Scholar 

  • Basu R, Harris M, Sie L, Malig B, Broadwin R, Green R (2014) Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environ Res 128:42–51

    Google Scholar 

  • Bondi ML, Montana G, Craparo EF, Picone P, Capuano G, Carlo MD, Giammona G (2009) Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: preparation, characterization and cytotoxicity studies. Curr Nanosci 5(1):26–32

    Article  CAS  Google Scholar 

  • Cattaneo AG, Gornati R, Sabbioni E, Chiriva-Internati M, Cobos E, Jenkins MR, Bernardinia G (2010) Nanotechnology and human health: risks and benefits. J Appl Toxicol 30(8):730–744

    Article  CAS  PubMed  Google Scholar 

  • Chupani L, Zusková E, Niksirat H, Panáček A, Lünsmann V, Haange S-B, von Bergen M, Jehmlich N (2017) Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci Tot Environ 579:1504–1511

    Google Scholar 

  • Daraee H, Eatemadi A, Abbasi E, Aval SF, Kouhi M, Akbarzadeh A (2014) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 44(1):410–422

    Article  PubMed  Google Scholar 

  • Doubrovsky VA, Yanina IY, Tuchin VV (2011) Inhomogeneity of photo-induced fat cell lipolysis. In: Proceedings SPIE. International Society for Optics and Photonics, vol 7999, p 79990M

    Google Scholar 

  • Eom Y, Song JS, Lee DY, Kim MK, Kang BR, Heo JH, Lee HK, Kim HM (2016) Effect of titanium dioxide nanoparticle exposure on the ocular surface: an animal study. The Ocul Surf 14(2):224–232

    Article  PubMed  Google Scholar 

  • Fadel TR, Steevens JA, Thomas TA, Linkov I (2014) The challenges of nanotechnology risk management. Nano Today 10:6–10

    Article  Google Scholar 

  • Fang C, Shi B, Pei Y-Y, Hong M-H, Wu J, Chen H-Z (2006) In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27(1):27–36

    Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    Article  CAS  PubMed  Google Scholar 

  • Feder BJ (2004) Health Concerns in Nanotechnology. The New York Times

    Google Scholar 

  • Fent K, Kunz PY, Gomez E (2008) UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish. Chimia Int J Chem 62(5):368–375

    Article  CAS  Google Scholar 

  • Forest V, Leclerc L, Hochepied JF, Trouvé A, Sarry G, Pourchez J (2017) Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol In Vitro 38:136–141

    Article  CAS  PubMed  Google Scholar 

  • Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17(3):295–303

    Article  Google Scholar 

  • Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115(3):397–402

    Article  CAS  PubMed  Google Scholar 

  • Gulumian M, Kuempel ED, Savolainen K (2012) Global challenges in the risk assessment of nanomaterials: relevance to South Africa. S Afr J Sci 108(9–10):1–9

    Google Scholar 

  • Hou J, Wang X, Hayat T, Wang X (2016) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut 221:209–217

    Article  PubMed  Google Scholar 

  • Hu Y, Fine DH, Tasciotti E, Bouamrani A, Ferrari M (2011) Nanodevices in diagnostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(1):11–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Chen G, Zeng G, Guo Z, He K, Hu L, Wu J, Zhang L, Zhu Y, Song Z (2017) Toxicity mechanisms and synergies of silver nanoparticles in 2, 4-dichlorophenol degradation by Phanerochaete chrysosporium. J Hazard Mater 321:37–46

    Article  CAS  PubMed  Google Scholar 

  • Hull MS, Quadros ME, Born R, Provo J, Lohani VK, Mahajan RL (2014) Sustainable nanotechnology: a regional perspective. In: Micro and nano technologies. Nanotechnology environmental health and safety, 2nd edn. William Andrew Publishing, Oxford, pp 395–424, ISBN 9781455731886

    Google Scholar 

  • Jain K, Mehra NK, Jain NK (2014) Potentials and emerging trends in nanopharmacology. Curr Opin Pharmacol 15:97–106

    Article  CAS  PubMed  Google Scholar 

  • Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Lien HL, Shih YH, Yan W, OK YS (2016) Preface: Environmental nanotechnol. J Hazard Mater 322(Pt A):1

    Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Tech 46(13):6893–6899

    Google Scholar 

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278

    Google Scholar 

  • NIOSH (2013) Current intelligence bulletin n. 65: occupational exposure to carbon nanotubes and nanofibers. NIOSH docket number: NIOSH 2013-145, National Institute for Occupational Safety and Health, Cincinnati, OH

    Google Scholar 

  • Park EJ, Lee GH, Yoon C, Kim DW (2016) Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice. Environ Res 150:154–165

    Article  CAS  PubMed  Google Scholar 

  • Pini M, Bondioli F, Montecchi R, Neri P, Ferrari AM (2016) Environmental and human health assessment of life cycle of nanoTiO 2 functionalized porcelain stoneware tile. Sci Total Environ 577:113–121

    Article  PubMed  Google Scholar 

  • Quadros ME, Pierson R, Tulve NS, Willis R, Rogers K, Thomas TA, Marr LC (2013) Release of silver from nanotechnology-based consumer products for children. Environ Sci Tech 47(15):8894–8901

    Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C 27(1):1–35

    Article  CAS  Google Scholar 

  • Renwick LC (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447

    Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61(47):11278–11285

    Article  CAS  PubMed  Google Scholar 

  • Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JEN, Omidfar K (2014) Drug targeting using solid lipid nanoparticles. Chem Phys Lipid 181:56–61

    Article  CAS  Google Scholar 

  • Santos AJM, Miranda MS, da Silva JCGE (2012) The degradation products of UV filters in aqueous and chlorinated aqueous solutions. Water Res 46(10):3167–3176

    Article  CAS  PubMed  Google Scholar 

  • Sendra M, Sánchez-Quiles D, Blasco J, Moreno-Garrido I, Lubián LM, Pérez-García S, Tovar-Sánchez A (2017) Effects of TiO 2 nanoparticles and sunscreens on coastal marine microalgae: ultraviolet radiation is key variable for toxicity assessment. Environ Int 98:62–68

    Article  CAS  PubMed  Google Scholar 

  • Stahlhofen WG, Rudolf G, James AC (1989) Intercomparison of experimental regional aerosol deposition data. J Aerosol Med 2(3):285–308

    Article  Google Scholar 

  • Tran DT, Salmon R (2011) Potential photocarcinogenic effects of nanoparticle sunscreens. Australas J Dermatol 52(1):1–6

    Article  PubMed  Google Scholar 

  • Unfried K, Albrecht C, Klotz LO, Mikecz AV, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71

    Article  CAS  Google Scholar 

  • Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mate Charact Eng 9(5):455–459

    Google Scholar 

  • Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, Farid RM, Blanco-Prieto MJ, Billa N, Hanafy AS (2016) Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Controlled Release 10(245):95–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza Helena da Silva Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martins, L.H.S. et al. (2017). Nanomaterials: Properties, Toxicity, Safety, and Drug Delivery. In: Rai, M., Alves dos Santos, C. (eds) Nanotechnology Applied To Pharmaceutical Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70299-5_15

Download citation

Publish with us

Policies and ethics