Skip to main content

In Situ Analysis of Moisture in Cement Based Materials

  • Chapter
  • First Online:
Optical Phenomenology and Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 28))

  • 492 Accesses

Abstract

An approach for the evaluation of moisture transport in porous media is introduced and demonstrated through measurement of capillary absorption and evaporative drying in cement mortar. The sensing method is based on the application of Near-Infrared spectroscopy, where the internal environment of the cement mortar is monitored by measurement the absorption peaks of the water molecule using light traveling through an optical fiber. The fibers were altered by replacing a short length of the fiber cladding with a porous membrane, allowing the propagating light to interact with the water in the surrounding pore space, registering the respective moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari, F. (2000). Condition monitoring of materials and structures. Reston, Va: American Society of Civil Engineers.

    Book  Google Scholar 

  • Boguszynska, J., Brown, M. C. A., Mcdonald, P. J., Mitchell, J., Mulheron, M., Tritt-Goc, J., et al. (2005). Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields. Cement and Concrete Research, 35(10), 2033–2040.

    Article  Google Scholar 

  • Cheng, K. C., Yoon, S., Kostarelos, K., Ghandehari, M., & Vimer, C. (2008). Near-Infrared spectroscopy for in situ monitoring of geoenvironment.

    Google Scholar 

  • Claisse, P. A. (2014). Transport properties of concrete: Measurements and applications. Cambridge: Woodhead Publishing.

    Google Scholar 

  • Crank, J. (1976). The mathematics of diffusion (2nd ed., Repr. edn.). Oxford: Clarendon Pr.

    Google Scholar 

  • Da Rocha, M. C., Da Silva, L. M., Appoloni, C. R., Portezan Filho, O., Lopes, F., Melquíades, F. L., et al. (2001). Moisture profile measurements of concrete samples in vertical water flow by gamma ray transmission method. Radiation Physics and Chemistry, 61(3), 567–569.

    Article  Google Scholar 

  • De J. Cano-Barrita, P. F., Marble, A. E., Balcom, B. J., García, J. C., Masthikin, I. V., Thomas, M. D. A., et al. (2009). Embedded NMR sensors to monitor evaporable water loss caused by hydration and drying in portland cement mortar. Cement and Concrete Research, 39(4), 324–328.

    Article  Google Scholar 

  • Dyer, T. (2014). Concrete durability (1st ed.). London: Crc Press.

    Book  Google Scholar 

  • FHWA. (2017-last update). ASR reference center. Available: https://www.fhwa.dot.gov/pavement/concrete/asr/referencecfm.

  • Ghandehari, M., & Khalil, G. (2005). Materials health management by in situ chemical analysis. ASNT Journal of Materials Evaluation, 63(7).

    Google Scholar 

  • Ghandehari, M., & Vimer, C. S. (2004). in situ monitoring of pH level with fiber optic evanescent field spectroscopy. NDT and E International, 37(8), 611–616.

    Article  Google Scholar 

  • Grasley, Z., Lange, D., & D’ambrosia, M. (2006). Internal relative humidity and drying stress gradients in concrete. Materials and Structures, 39(9), 901–909.

    Article  Google Scholar 

  • Gummerson, R. J., Hall, C., & Hoff, W. D. (1981). Water movement in porous building materials—III. A sorptivity test procedure for chemical injection damp proofing. Building and Environment, 16(3), 193–199.

    Article  Google Scholar 

  • Hall, C., & Hoff, W. D. (2011). Water transport in brick, stone and concrete (2ed.). London [u.a.]: Taylor & Francis.

    Google Scholar 

  • Hall, C., & Yau, M. H. (1987). Water movement in porous building materials—IX. The water absorption and sorptivity of concretes. Building and Environment, 22(1), 77–82.

    Article  Google Scholar 

  • Hansen, E. J., & Hansen, M. H. (2002). TDR measurement of moisture content in aerated concrete. In 6th symposium on building physics in The Nordic Countries, June 17–19, 2002 (pp. 381–388). Norwegian University of Science and Technology.

    Google Scholar 

  • Hanzic, L., & Ilic, R. (2003). Relationship between liquid sorptivity and capillarity in concrete. Cement and Concrete Research, 33, 1385–1388.

    Article  Google Scholar 

  • Henkensiefken, R., Castro, J., Bentz, D., Nantung, T., & Weiss, J. (2009). Water absorption in internally cured mortar made with water-filled lightweight aggregate. Cement and Concrete Research, 39(10), 883–892.

    Article  Google Scholar 

  • Hobbs, D. W. (2001). Concrete deterioration: Causes, diagnosis and minimizing risk. International Materials Reviews, 46(3), 117–144.

    Article  Google Scholar 

  • Hoff, W. D., & Hall, C. (2009). Water transport in brick, stone and concrete. (2nd ed.). Baton Rouge: CRC Press.

    Google Scholar 

  • Hoff, W. D., Hall, C., Hawkes, R., Holland, G. N., Moore, W. S., & Gummerson, R. J. (1979). Unsaturated water flow within porous materials observed by NMR imaging. Nature, 281(5726), 56–57.

    Article  Google Scholar 

  • Ioannou, I., Hall, C., Wilson, M. A., Hoff, W. D., & Carter, M. A. (2003). Direct measurement of the wetting front capillary pressure in a clay brick ceramic. Journal of Physics. D. Applied Physics, 36(24), 3176–3182.

    Article  Google Scholar 

  • Johnson, F. J., Cross, W. M., Boyles, D. A., & Kellar, J. J. (2000). “Complete” system monitoring of polymer matrix composites. Composites: Part A, 31(9), 959–968.

    Article  Google Scholar 

  • Kanematsu, M., Maruyama, I., Noguchi, T., Iikura, H., & Tsuchiya, N. (2009). Quantification of water penetration into concrete through cracks by neutron radiography. Nuclear Inst. and Methods in Physics Research, A, 605(1), 154–158.

    Article  Google Scholar 

  • Kumaran, M. K., & Bomberg, M. A. (1985). A gamma-spectrometer for determination of density distribution and moisture distribution in building materials (pp. 485–490). National Research Council Canada, NRCC24693.

    Google Scholar 

  • Laurens, S., Balayssac, J., Rhazi, J., Klysz, G., & Arliguie, G. (2005). Non-destructive evaluation of concrete moisture by GPR: Experimental study and direct modeling. Materials and Structures, 38(9), 827–832.

    Article  Google Scholar 

  • Martys, N. (1995). Survey of concrete transport properties and their measurement (Nistir 5592 ed.). Gathersburg Md: National Bureau of Standards.

    Google Scholar 

  • Martys, N., & Hagedorn, J. (2002). Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods. Materials and Structures, 35(10), 650–658.

    Article  Google Scholar 

  • Mijović, J., & Andjelić, S. (1995). In situ real-time monitoring of reactive systems by remote fibre-optic near-infra-red spectroscopy. Polymer, 36(19), 3783–3786.

    Article  Google Scholar 

  • Okamura, S. (2000). Microwave technology for moisture measurement. Subsurface Sensing Technologies and Applications, 1(2), 205.

    Article  Google Scholar 

  • Pavlík, Z., Jiřičková, M., Černý, R., Sobczuk, H., & Suchorab, Z. (2006). Determination of moisture diffusivity using the time domain reflectometry (TDR) method. Journal of Building Physics, 30(1), 59–70.

    Article  Google Scholar 

  • Pavlík, J., Tydlitát, V., Černý, R., Bouška, P., Rovnaníková, P., & Kle, T. (2003). Application of a microwave impulse technique to the measurement of free water content in early hydration stages of cement paste. Cement and Concrete Research, 33(1), 93–102.

    Article  Google Scholar 

  • Poukhonto, L. M. (2003). Durability of concrete structures and constructions: Silos, bunkers, reservoirs, water towers, retaining walls. Exton, PA: A.A. Balkema.

    Google Scholar 

  • Prado, P. J. (2001). NMR hand-held moisture sensor. Magnetic Resonance Imaging, 19(3), 505–508.

    Article  Google Scholar 

  • Roels, S., & Carmeliet, J. (2006). Analysis of moisture flow in porous materials using microfocus x-ray radiography. International Journal of Heat and Mass Transfer, 49(25), 4762–4772.

    Article  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by amplified least squares procedures. Analytical Chemistry, 36, 1627–1639.

    Article  Google Scholar 

  • Sun, H., Ren, Z., Memon, S. A., Zhao, D., Zhang, X., Li, D., et al. (2017). Investigating drying behavior of cement mortar through electrochemical impedance spectroscopy analysis. Construction and Building Materials, 135, 361.

    Article  Google Scholar 

  • Youngs, E. C., Leeds-Harrison, P. B., & Garnett, R. S. (1994). Water uptake by aggregates. European Journal of Soil Science, 45(2), 127–134.

    Article  Google Scholar 

  • Zhang, P., Wittmann, F. H., Zhao, T., Lehmann, E. H., & Vontobel, P. (2011). Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nuclear Engineering and Design, 241(12), 4758–4766.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghandehari .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghandehari, M., Vimer, C.S., Ioannou, I., Sidelev, A., Spellane, P. (2018). In Situ Analysis of Moisture in Cement Based Materials. In: Optical Phenomenology and Applications . Smart Sensors, Measurement and Instrumentation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-70715-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70715-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70714-3

  • Online ISBN: 978-3-319-70715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics