Skip to main content

Tomographic Terahertz Imaging Using Sequential Subspace Optimization

  • Chapter
  • First Online:
New Trends in Parameter Identification for Mathematical Models

Part of the book series: Trends in Mathematics ((TM))

Abstract

Terahertz tomography aims for reconstructing the complex refractive index of a specimen, which is illuminated by electromagnetic radiation in the terahertz regime, from measurements of the resulting (total) electric field outside the object. The illuminating radiation is reflected, refracted, and absorbed by the object. In this work, we reconstruct the complex refractive index from tomographic measurements by means of regularization techniques in order to detect defects such as holes, cracks, and other inclusions, or to identify different materials and the moisture content. Mathematically, we are dealing with a nonlinear parameter identification problem for the two-dimensional Helmholtz equation, and solve it with the Landweber method and sequential subspace optimization. The article concludes with some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Arendt, K. Urban, Partielle Differenzialgleichungen (Spektrum Akademischer Verlag, Berlin, 2010)

    Book  MATH  Google Scholar 

  2. K. Atkinson, W. Han, Theoretical Numerical Analysis (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  3. G. Bao, P. Li, Inverse medium scattering for the Helmholtz equation at fixed frequency. Inverse Probl. 21(5), 16–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Bao, P. Li, Inverse medium scattering problems in near-field optics. J. Comput. Math. 25(3), 252–265 (2007)

    MathSciNet  Google Scholar 

  5. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer Science+Business Media, New York, 2011)

    MATH  Google Scholar 

  6. W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70(8), 1325–1379 (2007)

    Article  Google Scholar 

  7. D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  8. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics (American Mathematical Society, Providence, 1998)

    Google Scholar 

  9. B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002)

    Article  Google Scholar 

  10. D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 2001)

    MATH  Google Scholar 

  11. J.P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, P. Mounaix, Review of terahertz tomography techniques. J. Infrared Millim. Terahertz Waves 35(4), 382–411 (2014)

    Article  Google Scholar 

  12. P.R. Halmos, Measure Theory (Springer, Berlin, 2013)

    Google Scholar 

  13. M. Hanke, A. Neubauer, O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72(1), 21–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Narkiss, M. Zibulevsky, Sequential subspace optimization method for large-scale unconstrained optimization. Technical report, Technion - The Israel Institute of Technology, Department of Electrical Engineering, 2005

    Google Scholar 

  15. F. Natterer, The Mathematics of Computerized Tomography (Vieweg+Teubner Verlag, Berlin, 1986)

    MATH  Google Scholar 

  16. S. Sauter, C. Schwab, Boundary Element Methods (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  17. F. Scheck. Theoretische Physik 3 (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  18. F. Schöpfer, T. Schuster, Fast regularizing sequential subspace optimization in Banach spaces. Inverse Probl. 25(1), 015013 (2009)

    Google Scholar 

  19. F. Schöpfer, A.K. Louis, T. Schuster, Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods. J. Inverse Ill-Posed Probl. 16(5), 479–206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Tepe, T. Schuster, B. Littau, A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography. Inverse Probl. Sci. Eng. 25, 1448–1473 (2016)

    Article  MathSciNet  Google Scholar 

  21. A. Wald, T. Schuster, Sequential subspace optimization for nonlinear inverse problems. J. Inverse Ill-posed Probl. 25(4), 99–117 (2016)

    MathSciNet  MATH  Google Scholar 

  22. D. Werner, Funktionalanalysis (Springer, New York, 2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Heiko Hoffmann for valuable discussions about the proof of Theorem 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wald, A., Schuster, T. (2018). Tomographic Terahertz Imaging Using Sequential Subspace Optimization. In: Hofmann, B., Leitão, A., Zubelli, J. (eds) New Trends in Parameter Identification for Mathematical Models. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70824-9_14

Download citation

Publish with us

Policies and ethics