Skip to main content

A Network of Spiking Neurons Performing a Relational Categorization Task

  • Conference paper
  • First Online:
Computational Neuroscience (LAWCN 2017)

Abstract

The study of the storage and transmission of information in neural networks is an important and challenging field of research. Studies in this area aim to understand the process by which the neural systems encode and process information originating from the environment. This work aims to develop a computational model that can be used to study how neural systems encode and relate information about external stimuli. To fulfill this purpose, a computational model composed by a spiking neuron network is developed to perform a task of relational categorization that consists in measuring the relation between the intensities of two signals applied to network. A Genetic Algorithm is used to optimize the synaptic weights of the network. The results show that the network is able to perform the task of relational categorization according to a threshold defined as error rate, as well as shows that the ability of the network to detect the relation between the signals depends on the minimum and maximum difference in the number of spikes in a given time window.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian, E.D.: The impulses produced by sensory nerve endings. J. Physiol. 61(1), 49–72 (1926)

    Article  Google Scholar 

  2. Aguilera, M., Bedia, M.G., Santos, B.A., Barandiaran, X.E.: The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics. Front. Comput. Neurosci. 7, 117 (2013)

    Article  Google Scholar 

  3. Barlow Jr., R.B.: Neural coding of light intensity. In: Ratio Scaling of Psychological Magnitude: In Honor of the Memory of SS Stevens, p. 163 (2013)

    Google Scholar 

  4. Bucci, L.D., Chou, T.S., Krichmar, J.L.: Sensory decoding in a tactile, interactive neurorobot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1909–1914. IEEE (2014)

    Google Scholar 

  5. De Valois, R.L., De Valois, K.D.: Neural Coding of Color (1997)

    Google Scholar 

  6. Frisina, R.D.: Subcortical neural coding mechanisms for auditory temporal processing. Hear. Res. 158(1), 1–27 (2001)

    Article  Google Scholar 

  7. Goldwater, M.B., Schalk, L.: Relational categories as a bridge between cognitive and educational research. Psychol. Bull. 142(7), 729–757 (2016)

    Article  Google Scholar 

  8. Gollisch, T., Meister, M.: Rapid neural coding in the retina with relative spike latencies. Science 319(5866), 1108–1111 (2008)

    Article  Google Scholar 

  9. Grodzinsky, Y., Nelken, I.: The neural code that makes us human. Science 343(6174), 978–979 (2014)

    Article  Google Scholar 

  10. Harvey, I.: The microbial genetic algorithm. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009. LNCS, vol. 5778, pp. 126–133. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21314-4_16

    Chapter  Google Scholar 

  11. Haxby, J.V., Connolly, A.C., Guntupalli, J.S.: Decoding neural representational spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37, 435–456 (2014)

    Article  Google Scholar 

  12. Hipp, J.F., Engel, A.K., Siegel, M.: Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69(2), 387–396 (2011)

    Article  Google Scholar 

  13. Hummel, J.E., Holyoak, K.J.: Distributed representations of structure: a theory of analogical access and mapping. Psychol. Rev. 104(3), 427 (1997)

    Article  Google Scholar 

  14. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  15. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  16. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18(2), 245–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reinagel, P., Reid, R.C.: Precise firing events are conserved across neurons. J. Neurosci. 22(16), 6837–6841 (2002)

    Google Scholar 

  18. Rieke, F., Warland, D., van Steveninck, R.D.R., Bialek, W.: Spikes: Exploring the Neural Code. MIT press (1999)

    Google Scholar 

  19. Roth, A., van Rossum, M.: Computational Modeling Methods for Neuroscientists (2009)

    Google Scholar 

  20. Santos, B., Barandiaran, X., Husbands, P., Aguilera, M., Bedia, M.: Sensorimotor coordination and metastability in a situated HKB model. Conn. Sci. 24(4), 143–161 (2012)

    Article  Google Scholar 

  21. Santos, B.A., Barandiaran, X.E., Husbands, P.: Synchrony and phase relation dynamics underlying sensorimotor coordination. Adapt. Behav. 20(5), 321–336 (2012)

    Article  Google Scholar 

  22. Seth, A.K.: Neural coding: rate and time codes work together. Curr. Biol. 25(3), R110–R113 (2015)

    Article  Google Scholar 

  23. Singer, W.: Dynamic formation of functional networks by synchronization. Neuron 69(2), 191–193 (2011)

    Article  MathSciNet  Google Scholar 

  24. Stanley, G.B.: Reading and writing the neural code. Nat. Neurosci. 16(3), 259–263 (2013)

    Article  Google Scholar 

  25. Tomlinson, M.T., Love, B.C.: From pigeons to humans: grounding relational learning in concrete examples. In: Proceedings of the National Conference on Artificial Intelligence, vol. 21, p. 199. AAAI Press/MIT Press, Menlo Park/Cambridge/London (1999, 2006)

    Google Scholar 

  26. Williams, P.L., Beer, R.D., Gasser, M.: An embodied dynamical approach to relational categorization. In: Proceedings of the Cognitive Science Society, vol. 30 (2008)

    Google Scholar 

  27. Yu, Q., Tang, H., Tan, K.C., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the support of CAPES-Brazil, CNPq-Brazil, FAPEMIG, and CEFET-MG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Ferreira Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alves, L.F., Araujo Junior, F.L., Santos, B.A., Gomes, R.M. (2017). A Network of Spiking Neurons Performing a Relational Categorization Task. In: Barone, D., Teles, E., Brackmann, C. (eds) Computational Neuroscience. LAWCN 2017. Communications in Computer and Information Science, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-71011-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71011-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71010-5

  • Online ISBN: 978-3-319-71011-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics