Skip to main content

Structure of Towers and a New Proof of the Tight Cut Lemma

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10627))

Abstract

In the first part of our study, we extend the theory of basilica canonical decomposition by introducing new concepts known as towers and tower-sequences. The basilica canonical decomposition is a recently proposed tool in matching theory that can be applied non-trivially even for general graphs with perfect matchings. When studying matchings, the structure of alternating paths frequently needs to be considered. We show how a graph is made up of towers and tower-sequences, and thus obtain the structure of alternating paths in terms of the basilica canonical decomposition. This result provides a strong tool for analyzing general graphs with perfect matchings.

The second part of our study is a new graph theoretic proof of the so-called Tight Cut Lemma derived from the first part of our study. To derive a characterization of the perfect matchings polytope, Edmonds, Lovász, and Pulleyblank introduced the Tight Cut Lemma as the most challenging aspect of their work. The Tight Cut Lemma in fact claims bricks as the fundamental building blocks that constitute a graph and can be referred to as a key result in this field. Although the Tight Cut Lemma itself is a purely graph theoretic statement, there was no known graph theoretic proof for decades until Szigeti provided such a proof using Frank-Szigeti’s optimal ear decomposition theory.

By contrast, we provide a new proof using the extended theory of basilica canonical decomposition as the only preliminary result, and accordingly proposes a new strategy for studying bricks and tight cuts or matching theory in general. Our proof shows how the discussions on alternating paths construct the Tight Cut Lemma from first principles via the basilica canonical decomposition, even without using barriers, that is, the dual notion of matchings. The distinguishing features of our proof are that it is purely graph theoretic, purely matching (cardinality 1-matching) theoretic, and purely “primal” with respect to matchings.

Supported by JSPS KAKENHI Grant Number 15J09683.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Regarding the duality of the maximum matching problem, alternating paths are essential to the primal optimality and algorithms. Hence, we say that alternating paths have a “primal” nature regarding matchings, in contradistinction to barriers.

  2. 2.

    We believe that almost all substantial results regarding cardinality 1-matchings use barriers. This may be problematic because, as Lovász and Plummer state [18], not so much is known about barriers and therefore the limitation of our knowledge about barriers can be the limitation of our ability to proceed in studying matchings.

References

  1. Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math. 10, 517–534 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dulmage, A.L., Mendelsohn, N.S.: A structure theory of bipartite graphs of finte exterior dimension. Trans. Roy. Soc. Can. Sect. III(53), 1–13 (1959)

    MATH  Google Scholar 

  3. Dulmage, A.L., Mendelsohn, N.S.: Two algorithms for bipartite graphs. J. Soc. Ind. Appl. Math. 11(1), 183–194 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  4. Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edmonds, J., Lovász, L., Pulleyblank, W.R.: Brick decompositions and the matching rank of graphs. Combinatorica 2(3), 247–274 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Frank, A.: Conservative weightings and ear-decompositions of graphs. Combinatorica 13, 65–81 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gallai, T.: Maximale systeme unabhängiger kanten. A Magyer Tudományos Akadémia: Intézetének Közleményei 8, 401–413 (1964)

    MATH  Google Scholar 

  8. Kita, N.: A new canonical decomposition in matching theory, under review

    Google Scholar 

  9. Kita, N.: A canonical characterization of the family of barriers in general graphs. CoRR abs/1212.5960 (2012)

    Google Scholar 

  10. Kita, N.: A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 85–94. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4_12

    Chapter  Google Scholar 

  11. Kita, N.: A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings. CoRR abs/1205.3 (2012)

    Google Scholar 

  12. Kita, N.: Disclosing barriers: a generalization of the canonical partition based on Lovász’s formulation. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 402–413. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03780-6_35

    Chapter  Google Scholar 

  13. Kotzig, A.: Z teórie konečnỳch grafov s lineárnym faktorom. I. Mat. časopis 9(2), 73–91 (1959)

    Google Scholar 

  14. Kotzig, A.: Z teórie konečnỳch grafov s lineárnym faktorom. II. Mat. časopis 9(3), 136–159 (1959)

    Google Scholar 

  15. Kotzig, A.: Z teórie konečnỳch grafov s lineárnym faktorom. III. Mat. časopis 10(4), 205–215 (1960)

    Google Scholar 

  16. Lovász, L.: On the structure of factorizable graphs. Acta Math. Hungarica 23(1–2), 179–195 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lovász, L.: Matching structure and the matching lattice. J. Comb. Theory, Ser. B 43(2), 187–222 (1987)

    Google Scholar 

  18. Lovász, L., Plummer, M.D.: Matching theory, vol. 367. American Mathematical Soc. (2009)

    Google Scholar 

  19. Naddef, D.: Rank of maximum matchings in a graph. Math. Program. 22(1), 52–70 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer Science & Business Media, Heidelberg (2003)

    Google Scholar 

  21. Szigeti, Z.: On a matroid defined by ear-decompositions of graphs. Combinatorica 16(2), 233–241 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Szigeti, Z.: On optimal ear-decompositions of graphs. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 415–428. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8_31

    Chapter  Google Scholar 

  23. Szigeti, Z.: On generalizations of matching-covered graphs. Eur. J. Comb. 22(6), 865–877 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Szigeti, Z.: Perfect matchings versus odd cuts. Combinatorica 22(4), 575–589 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanao Kita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kita, N. (2017). Structure of Towers and a New Proof of the Tight Cut Lemma. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10627. Springer, Cham. https://doi.org/10.1007/978-3-319-71150-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71150-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71149-2

  • Online ISBN: 978-3-319-71150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics