Skip to main content

The Role of Consumers in Structuring Seagrass Communities: Direct and Indirect Mechanisms

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Seagrass ecosystems were traditionally assumed to be structured by competition as well as by “bottom up forces” such as resource availability and disturbance. However, a wealth of new evidence demonstrates that exertion of “top down control” by animals may be widespread. The strength and direction of top down control is context dependent, however, and varies with properties of organisms, the community, and the physical environment. Consumers can facilitate, consume, or destroy primary producers, aid or inhibit seagrass reproduction, or alter bottom up processes with implications for the properties and persistence of seagrass ecosystems. Studies in Australian ecosystems have been critical in helping to elucidate the role of consumers in seagrass ecosystems . Specifically, work investigating the roles of megaherbivores and apex predators and the pioneering of novel experimental approaches which allow for cage-free manipulations of mesograzers have substantially furthered our understanding of top-down control. At the broadest scale, megagrazers are likely to dominate grazing pathways in Australian tropical and subtropical seagrass ecosystems, while macrograzers and mesograzers do so in temperate seagrass ecosystems. However, while we have learned much about mechanisms through which top-down control can operate and its effects on seagrass ecosystems, predicting which grazing pathways dominate at smaller spatial scales, and net herbivore effects on seagrasses in specific ecosystems remains challenging due to context dependence and the highly complex nature of species interactions. Anthropogenic impacts further complicate these relationships. Australian seagrass habitats possess unusual properties, including relatively intact populations of megafauna, remote and pristine locations, and distinctive oceanographic features which allow these habitats to provide unique insights of top down control in seagrass ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini S, Desjobert J-M, Pergent G (1998) Distribution of phenolic compounds in the seagrass Posidonia oceanica. Phytochemistry 48:611–617

    Article  CAS  Google Scholar 

  • Alcoverro T, Duarte CM, Romero J (1997) The influence of herbivores on Posidonia oceanica epiphytes. Aquat Bot 56:93–104

    Article  Google Scholar 

  • Allgeier JE, Yeager LA, Layman CA (2013) Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology 94:521–529

    Article  PubMed  Google Scholar 

  • Anderson PK (1986) Dugongs of Shark Bay, Australia-seasonal migration, water temperature, and forage. Natl Geogr Res 2:473–490

    Google Scholar 

  • André J, Gyuris E, Lawler IR (2005) Comparison of the diets of sympatric dugongs and green turtles on the Orman Reefs, Torres Strait, Australia. Wildl Res 32:53–62

    Google Scholar 

  • Aragones L, Marsh H (2000) Impact of dugong grazing and turtle cropping on tropical seagrass communities. Pacific Conserv Biol 5:277–288

    Article  Google Scholar 

  • Archer SK, Stoner EW, Layman CA (2015) A complex interaction between a sponge (Halichondria melanadocia) and a seagrass (Thalassia testudinum) in a subtropical coastal ecosystem. J Exp Mar Biol Ecol 465:33–40

    Article  Google Scholar 

  • Armitage AR, Fourqurean JW (2006) The short-term influence of herbivory near patch reefs varies between seagrass species. J Exp Mar Biol Ecol 339:65–74

    Article  Google Scholar 

  • Atwood TB, Connolly RM, Ritchie EG, Lovelock CE, Heithaus MR, Hays GC, Fourqurean JW, Macreadie PI (2015) Predators help protect carbon stocks in blue carbon ecosystems. Nat Clim Change 5:1038–1045

    Article  Google Scholar 

  • Barton BT (2010) Climate warming and predation risk during herbivore ontogeny. Ecology 91:2811–2818

    Article  PubMed  Google Scholar 

  • Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of shark populations in the Northwest Atlantic. Science 299:389–392

    Article  PubMed  CAS  Google Scholar 

  • Belicka LL, Burkholder D, Fourqurean JW, Heithaus MR, Macko SA, Jaffé R (2012) Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem. Mar Freshw Res 63:1085–1097

    Article  CAS  Google Scholar 

  • Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ (2015) Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett 18:714–723

    Google Scholar 

  • Bessey C, Heithaus MR (2013) Alarm call production and temporal variation in predator encounter rates for a facultative teleost grazer in a relatively pristine seagrass ecosystem. J Exp Mar Biol Ecol 449:135–141

    Article  Google Scholar 

  • Bessey C, Heithaus MR (2015) Ecological niche of an abundant teleost, Pelates octolineatus, in a subtropical seagrass ecosystem. Mar Ecol Prog Ser 541:195–204

    Article  CAS  Google Scholar 

  • Bessey C, Heithaus MR, Fourqurean JW, Gastrich KR, Burkholder DA (2016) Importance of teleost macrograzers to seagrass composition in a subtropical ecosystem with abundant populations of megagrazers and predators. Mar Ecol Prog Ser 553:81–92

    Article  Google Scholar 

  • Blaber SJM, Wassenberg TJ (1989) Feeding ecology of the piscivorous birds Phalacrocorax varius, P. melanoleucos and Sterna bergii in Moreton Bay, Australia: diets and dependence on trawler discards. Mar Biol 101:1–10

    Article  Google Scholar 

  • Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  • Borum J, Sand-Jensen K, Binzer T, Pedersen O, Greve TM (2007) Oxygen movement in seagrasses. In: Seagrasses: biology, ecology, and conservation. Springer, Netherlands, pp 255–270

    Google Scholar 

  • Borum J, Gruber RK, Kemp WM (2012) Seagrass and related submersed vascular plants. In: Estuarine ecology, 2nd edn, pp 111–127

    Google Scholar 

  • Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2015) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ

    Google Scholar 

  • Brand-Gardner SJ, Limpus CJ, Lanyon JM (1999) Diet selection by immature green turtles, Chelonia mydas, in subtropical Moreton Bay, south-east Queensland. Aust J Zool 47:181–191

    Article  Google Scholar 

  • Brearley A, Walker DI (1995) Isopod miners in the leaves of two Western Australian Posidonia species. Aquat Bot 52:163–181

    Article  Google Scholar 

  • Brearley A, Kendrick GA, Walker DI (2008) How does burrowing by the isopod Limnoria agrostisa (Crustacea: Limnoriidae) affect the leaf canopy of the southern Australian seagrass Amphibolis griffithii? Mar Biol 156:65–77

    Article  Google Scholar 

  • Brodeur MC, Piehler MF, Fodrie FJ (2015) Consumers mitigate heat stress and nutrient enrichment effects on eelgrass Zostera marina communities at its southern range limit. Mar Ecol Prog Ser 525:53–64

    Article  Google Scholar 

  • Brown JS, Kotler BP (2004) Hazardous duty pay and the foraging cost of predation. Ecol Lett 7:999–1014

    Article  Google Scholar 

  • Brown JS, Laundré JW, Gurung M (1999) The ecology of fear: optimal foraging, game theory, and trophic interactions. J Mammal 80:385–399

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Burkepile DE, Hay ME (2006) Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecol 87:3128–3139

    Google Scholar 

  • Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Nat Acad Sci 105:16201–16206

    Google Scholar 

  • Burkholder DA, Heithaus MR, Fourqurean JW (2012) Feeding preferences of herbivores in a relatively pristine subtropical seagrass ecosystem. Mar Freshw Res 63:1051–1058

    Article  Google Scholar 

  • Burkholder DA, Heithaus MR, Fourqurean JW, Wirsing A, Dill LM (2013) Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J Anim Ecol 82:1192–1202

    Article  PubMed  Google Scholar 

  • Burnell OW, Connell SD, Irving AD, Russell BD (2013a) Asymmetric patterns of recovery in two habitat forming seagrass species following simulated overgrazing by urchins. J Exp Mar Biol Ecol 448:114–120

    Article  Google Scholar 

  • Burnell OW, Russell BD, Irving AD, Connell SD (2013b) Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar Ecol Prog Ser 485:37–46

    Article  CAS  Google Scholar 

  • Campbell JE, Fourqurean JW (2013) Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Mar Biol 160:1465–1475

    Article  CAS  Google Scholar 

  • Carr LA, Boyer KE (2014) Variation at multiple trophic levels mediates a novel seagrass-grazer interaction. Mar Ecol Progr 508:117–128

    Article  Google Scholar 

  • Carr LA, Bruno JF (2013) Warming increases the top-down effects and metabolism of a subtidal herbivore. PeerJ 1:e109

    Article  PubMed  PubMed Central  Google Scholar 

  • Cebrián J, Duarte CM (1998) Patterns in leaf herbivory on seagrasses. Aquat Bot 60:67–82

    Article  Google Scholar 

  • Cebrián J, Duarte CM, Agawin, NSR, Merino M (1998) Leaf growth response to simulated herbivory: a comparison among seagrass species. J Exp Mar Biol Ecol 220:67–81

    Google Scholar 

  • Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251

    Article  Google Scholar 

  • Christianen MJ, Govers LL, Bouma TJ, Kiswara W, Roelofs JG, Lamers LP, van Katwijk MM (2012) Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. J Ecol 100:546–560

    Article  CAS  Google Scholar 

  • Christianen MJ, Herman PM, Bouma TJ, Lamers LP, van Katwijk MM, van der Heide T et al (2014) Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc R Soc Lond B Biol Sci 281:20132890

    Article  Google Scholar 

  • Cook K, Vanderklift MA, Poore AG (2011) Strong effects of herbivorous amphipods on epiphyte biomass in a temperate seagrass meadow. Mar Ecol Prog Ser 442:263–269

    Article  Google Scholar 

  • Creel S, Christianson D, Liley S, Winnie JA (2007) Predation risk affects reproductive physiology and demography of elk. Science 315:960 960

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Rivera E, Hay M (2001) Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. Mar Ecol Prog Ser 218:249–266

    Article  Google Scholar 

  • Davis RC, Short FT, Burdick DM (1998) Quantifying the effects of green crab damage to eelgrass transplants. Restor Ecol 6:297–302

    Google Scholar 

  • Dayton PK, Thrush SF, Agardy MT, Hofman RJ (1995) Environmental effects of marine fishing. Aquat Conserv Mar Freshw Ecosyst 5:205–232

    Article  Google Scholar 

  • De los Santos CB, Brun FG, Onoda Y, Cambridge ML, Bouma TJ, Vergara JJ, Pérez-Lloréns JL (2012) Leaf-fracture properties correlated with nutritional traits in nine Australian seagrass species: implications for susceptibility to herbivory. Mar Ecol Prog Ser 458

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Ostrich to ducks. Lynx Edicions, Barcelona. ISBN 84-87334-10-5

    Google Scholar 

  • Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. BioScience 86–94

    Google Scholar 

  • Dewsbury BM, Fourqurean JW (2010) Artificial reefs concentrate nutrients and alter benthic community structure in an oligotrophic, subtropical estuary. Bull Mar Sci 86:813–829

    Article  Google Scholar 

  • Dill LM, Heithaus MR, Walters CJ (2003) Behaviorally mediated indirect interactions in marine communities and their conservation implications. Ecology 84:1151–1157

    Article  Google Scholar 

  • Domning D (2001) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Paleoclimatol Paleoecol 166:27–50

    Article  Google Scholar 

  • Duarte CM (1999) Seagrass ecology at the turn of the millennium: challenges for the new century. Aquat Bot 65:7–20

    Article  Google Scholar 

  • Duffy JE, Harvilicz AM (2001) Species-specific impacts of grazing amphipods in an eelgrass-bed community. Mar Ecol Prog Ser 223:201–211

    Article  Google Scholar 

  • Duffy JE, Macdonald KS, Rhode JM, Parker JD (2001) Grazer diversity, functional redundancy, and productivity in seagrass beds: an experimental test. Ecology 82:2417–2434

    Article  Google Scholar 

  • Duffy J, Richardson J, Canuel E (2003) Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol Lett 6:637–645

    Article  Google Scholar 

  • Duffy JE, Paul Richardson J, France KE (2005) Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecol Lett 8:301–309

    Article  Google Scholar 

  • Duffy JE, Moksnes PI, Hughes AR (2013) Ecology of Seagrass Communities. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Sunderland, pp 271–297

    Google Scholar 

  • Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LN, Fordham SV, Francis MP et al (2014) Extinction risk and conservation of the world’s sharks and rays. eLife Sci 3:e00590

    Google Scholar 

  • Ebrahim A, Olds AD, Maxwell PS, Pitt KA, Burfeind DD, Connolly RM (2014) Herbivory in a subtropical seagrass ecosystem: separating the functional role of different grazers. Mar Ecol Prog Ser 511:83–91

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 586–608

    Google Scholar 

  • Eklöf JS, De la Torre-Castro M, Gullström M, Uku J, Muthiga N, Lyimo T, Bandeira SO (2008) Sea urchin overgrazing of seagrasses: a review of current knowledge on causes, consequences, and management. Estuar Coast Shelf Sci 79:569–580

    Article  Google Scholar 

  • Eklöf JS, McMahon K, Lavery PS (2010) Effects of multiple disturbances in seagrass meadows: shading decreases resilience to grazing. Mar Freshw Res 60:1317–1327

    Article  CAS  Google Scholar 

  • Eklöf JS, Alsterberg C, Havenhand JN, Sundbäck K, Wood HL, Gamfeldt L (2012) Experimental climate change weakens the insurance effect of biodiversity. Ecol Lett 15:864–872

    Article  PubMed  Google Scholar 

  • Elton CS (1927) Anim ecol. University of Chicago Press

    Google Scholar 

  • Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071

    PubMed  Google Scholar 

  • Ferreira LC, Thums M, Meeuwig JJ, Vianna GM, Stevens J, McAuley R, et al. (2015) Crossing latitudes—long-distance tracking of an apex predator. PLoS One 10:e0116916

    Google Scholar 

  • Fodrie F, Heck KL, Powers SP, Graham WM, Robinson KL (2010) Climate-related, decadal-scale assemblage changes of seagrass-associated fishes in the northern Gulf of Mexico. Glob Change Biol 16:48–59

    Google Scholar 

  • Fourqurean JW, Powell GV, Kenworthy WJ, Zieman JC (1995) The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 349–358

    Google Scholar 

  • Fourqurean JW, Moore TO, Fry B, Hollibaugh JT (1997) Spatial and temporal variation in C: N: P ratios, δ15N, and δ13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. Mar Ecol Prog Ser 157:147–157

    Article  CAS  Google Scholar 

  • Fourqurean JW, Escorcia SP, Anderson WT, Zieman JC (2005) Spatial and seasonal variability in elemental content, δ13C, and δ15N of Thalassia testudinum from South Florida and its implications for ecosystem studies. Estuaries 28:447–461

    Article  CAS  Google Scholar 

  • Fourqurean JW, Marbà N, Duarte CM, Díaz-Almela E, Ruiz-Halpern S (2007) Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain. Mar Biol 151:219–232

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ et al (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    Article  CAS  Google Scholar 

  • Fourqurean JW, Manuel SA, Coates KA, Kenworthy WJ, Boyer JN (2015) Water quality, isoscapes and stoichioscapes of seagrasses indicate general P limitation and unique N cycling in shallow water benthos of Bermuda. Biogeosciences 12:6235–6249

    Article  CAS  Google Scholar 

  • Fraser MW, Kendrick GA, Statton J, Hovey RK, Zavala-Perez A, Walker DI (2014) Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J Ecol 102:1528–1536

    Article  Google Scholar 

  • Garthwin RG, Poore AGB, Vergés A (2014) Seagrass tolerance to herbivory under increased ocean temperatures. Mar Pollut Bull 83:475–482

    Article  PubMed  CAS  Google Scholar 

  • Ghedini G, Russell BD, Connell SD (2015) Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol Lett 18:182–187

    Article  PubMed  Google Scholar 

  • Goecker ME, Heck KL Jr, Valentine JF (2005) Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians. Mar Ecol Prog Ser 286:239–248

    Article  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 421–425

    Google Scholar 

  • Hay ME (1986) Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Am Nat 617–641

    Google Scholar 

  • Hays CG (2005) Effect of nutrient availability, grazer assemblage and seagrass source population on the interaction between Thalassia testudinum (turtle grass) and its algal epiphytes. J Exp Mar Biol Ecol 314:53–68

    Article  Google Scholar 

  • Heck KL Jr, Hays G, Orth RJ (2003) Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar Ecol Prog Ser 253:123–136

    Article  Google Scholar 

  • Heck KL, Valentine JF (1995) Sea urchin herbivory: evidence for long-lasting effects in subtropical seagrass meadows. J Exp Mar Biol Ecol 189:205–217

    Article  Google Scholar 

  • Heck KL, Valentine JF (2006) Plant–herbivore interactions in seagrass meadows. J Exp Mar Biol Ecol 330:420–436

    Article  Google Scholar 

  • Heck KL, Valentine JF (2007) The primacy of top-down effects in shallow benthic ecosystems. Estuaries Coasts 30:371–381

    Article  Google Scholar 

  • Heck KL, Pennock JR, Valentine JF, Coen LD, Sklenar SA (2000) Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment. Limnol Oceanogr 45:1041–1057

    Article  CAS  Google Scholar 

  • Heck KL Jr, Fodrie FJ, Madsen S, Baillie CJ, Byron DA (2015) Seagrass consumption by native and a tropically associated fish species: potential impacts of the tropicalization of the northern Gulf of Mexico. Mar Ecol Prog Ser 520:165–173

    Google Scholar 

  • Heithaus MR (2004) Fish communities of subtropical seagrass meadows and associated habitats in Shark Bay, Western Australia. Bull Mar Sci 75:79–99

    Google Scholar 

  • Heithaus MR (2005) Habitat use and group size of pied cormorants (Phalacrocorax varius) in a seagrass ecosystem: possible effects of food abundance and predation risk. Mar Biol 147:27–35

    Article  Google Scholar 

  • Heithaus MR (2013) Predators, prey, and ecological roles of sea turtles. In: Wyneken JJ, Lohman K, Musick JA (eds) Biology of sea turtles

    Google Scholar 

  • Heithaus MR, Dill LM (2002) Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83:480–491

    Article  Google Scholar 

  • Heithaus M, Dill L (2006) Does tiger shark predation risk influence foraging habitat use by bottlenose dolphins at multiple spatial scales? Oikos 114:257–264

    Article  Google Scholar 

  • Heithaus MR, Frid A, Wirsing AJ, Dill LM, Fourqurean JW, Burkholder D, Thomson J, Bejder L (2007) State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. J Anim Ecol 76:837–844

    Article  PubMed  Google Scholar 

  • Heithaus MR, Wirsing AJ, Thomson JA, Burkholder DA (2008a) A review of lethal and non-lethal effects of predators on adult marine turtles. J Exp Mar Biol Ecol 356:43–51

    Article  Google Scholar 

  • Heithaus MR, Frid A, Wirsing AJ, Worm B (2008b) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210

    Article  PubMed  Google Scholar 

  • Heithaus MR, Wirsing AJ, Dill LM (2012) The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar Freshw Res 63:1039–1050

    Article  Google Scholar 

  • Heithaus MR, Alcoverro T, Arthur R, Burkholder DA, Coates KA, Christianen MJ, Kelkar N, Manuel SA, Wirsing AJ, Kenworthy WJ et al (2014) Seagrasses in the age of sea turtle conservation and shark overfishing. Front Mar Sci 1:28

    Article  Google Scholar 

  • Heithaus MR, Wirsing AJ, Burkholder D, Thomson J, Dill LM (2009) Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics. J Anim Ecol 78:556–562

    Google Scholar 

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press

    Google Scholar 

  • Hillebrand H, Borer ET, Bracken ME, Cardinale BJ, Cebrian J, Cleland EE, Elser JJ, Gruner DS, Stanley Harpole W, Ngai JT et al (2009) Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecol Lett 12:516–527

    Article  PubMed  Google Scholar 

  • Holbrook SJ, Reed DC, Hansen K, Blanchette CA (2000) Spatial and temporal patterns of predation on seeds of the surfgrass Phyllospadix torreyi. Mar Biol 136:739–747

    Article  Google Scholar 

  • Holmes BJ, Pepperell JG, Griffiths SP, Jaine FR, Tibbetts IR Bennett MB (2014) Tiger shark (Galeocerdo cuvier) movement patterns and habitat use determined by satellite tagging in eastern Australian waters. Mar biol 161, 2645–2658

    Google Scholar 

  • Holzer KK, Rueda JL, McGlathery KJ (2011) Differences in the feeding ecology of two seagrass-associated snails. Estuaries Coasts 34:1140–1149

    Article  Google Scholar 

  • Hughes ARR, Bando KJ, Rodriguez LF, Williams SL (2004) Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Mar Ecol Prog Ser 282

    Google Scholar 

  • Humphries P, Hyndes GA, Potter IC (1992) Comparisons between the diets of distant taxa (teleost and cormorant) in an Australian estuary. Estuaries 15:327–334

    Article  Google Scholar 

  • Jackson JB (2001) What was natural in the coastal oceans? Proc Natl Acad Sci 98:5411–5418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  PubMed  CAS  Google Scholar 

  • Jernakoff P, Nielsen J (1997) The relative importance of amphipod and gastropod grazers in Posidonia sinuosa meadows. Aquat Bot 56:183–202

    Article  Google Scholar 

  • Kelkar N, Arthur R, Marbà N, Alcoverro T (2013) Greener pastures? High-density feeding aggregations of green turtles precipitate species shifts in seagrass meadows. J Ecol 101:1158–1168

    Article  Google Scholar 

  • Kendrick GA, Aylward MJ, Hegge BJ, Cambridge ML, Hillman K, Wyllie A, Lord DA (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73:75–87

    Article  Google Scholar 

  • Keuskamp D (2004) Limited effects of grazer exclusion on the epiphytes of Posidonia sinuosa in South Australia. Aquat Bot 78:3–14

    Google Scholar 

  • Kirkman H, Reid DD (1979) A study of the role of the seagrass Posidonia australis in the carbon budget of an estuary. Aquat Bot 7:173–183

    Article  CAS  Google Scholar 

  • Kirsch KD, Valentine JF, Heck KL (2002) Parrotfish grazing on turtlegrass Thalassia testudinum: evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Mar Ecol Prog Ser 227:71–85

    Article  Google Scholar 

  • Klumpp D, Howard R, Pollard D (1989) Trophodynamics and nutritional ecology of seagrass communities (Chap. 13, pp 394–457). In: Larkum A, McComb A (eds) The Larkrum book. In: Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian Region. Elsevier, Amsterdam, pp 394–457

    Google Scholar 

  • Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–226

    Article  Google Scholar 

  • Lanyon J, Limpus C, Marsh H (1989) Dugongs and turtles: grazers in the seagrass ecosystem. In: Biology of seagrasses. Elsevier, Amsterdam, pp 610–634

    Google Scholar 

  • Larkum AWD, West RJ (1990) Long-term changes of seagrass meadows in Botany Bay, Australia. Aquat Bot 37:55–70

    Article  Google Scholar 

  • Last PR, White WT, Gledhill DC, Hobday AJ, Brown R, Edgar GJ, Pecl G (2011) Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob Ecol Biogeogr 20:58–72

    Article  Google Scholar 

  • Lavery TJ, Roudnew B, Mitchell JG (2015) Nitrogen transport from sea to land by a threatened and declining population of Australian sea lions (Neophoca cinerea) on Kangaroo Island, South Australia. Aust mammal 37:92–96

    Google Scholar 

  • Lee C-L, Huang Y-H, Chung C-Y, Hsiao S-C, Lin H-J (2015) Herbivory in multi-species, tropical seagrass beds. MEPS 525:65–80

    Article  Google Scholar 

  • Lemoine NP, Burkepile DE (2012) Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecol 93;2483–2489

    Google Scholar 

  • Lewis LS, Anderson TW (2012) Top-down control of epifauna by fishes enhances seagrass production. Ecol 93:2746–2757

    Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48:25–34

    Article  Google Scholar 

  • Ling SD (2008) Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156:883–894

    Article  PubMed  CAS  Google Scholar 

  • Lipkin Y (1975) Halophila stipulacea, a review of a successful immigration. Aquat Bot 1:203–215

    Article  Google Scholar 

  • Lobel PS, Ogden JC (1981) Foraging by the herbivorous parrotfish Sparisoma radians. Mar Biol 64:173–183

    Article  Google Scholar 

  • Long HA, Grosholz ED (2015) Overgrowth of eelgrass by the invasive colonial tunicate Didemnum vexillum: consequences for tunicate and eelgrass growth and epifauna abundance. J Exp Mar Biol Ecol 473:188–194

    Article  Google Scholar 

  • Long BG, Skewes TD (1996) On the trail of seagrass dieback in Torres Strait. Prof Fish 15–18

    Google Scholar 

  • Lowther AD, Harcourt RG, Hamer DJ, Goldsworthy SD (2011) Creatures of habit: foraging habitat fidelity of adult female Australian sea lions. Mar Ecol Prog Ser 443:249–263

    Article  Google Scholar 

  • MacArthur LD, Hyndes GA (2007) Varying foraging strategies of Labridae in seagrass habitats: herbivory in temperate seagrass meadows? J Exp Mar Biol Ecol 340:247–258

    Article  Google Scholar 

  • Mach ME, Wyllie-Echeverria S, Chan KM (2014) Ecological effect of a nonnative seagrass spreading in the Northeast Pacific: a review of Zostera japonica. Ocean Coast Manag 102:375–382

    Article  Google Scholar 

  • Madin EMP, Dill LM, Ridlon AD, Heithaus MR, Warner RR (2016) Human activities change marine ecosystems by altering predation risk. Glob Change Biol 22:44–60

    Article  Google Scholar 

  • Marco-Méndez C, Prado P, Heck KL, Cebrián J, Sánchez-Lizaso JL (2012) Epiphytes mediate the trophic role of sea urchins in Thalassia testudinum seagrass beds. Mar Ecol Prog Ser 460:91–100

    Google Scholar 

  • Mariani S, Alcoverro T (1999) A multiple-choice feeding-preference experiment utilising seagrasses with a natural population of herbivorous fishes. Mar Ecol Prog Ser 295–299

    Google Scholar 

  • Marsh H (2002) Dugong: status report and action plans for countries and territories. UNEP/Earthprint

    Google Scholar 

  • Marsh H, Lawler IR (2002) Dugong distribution and abundance in the northern Great Barrier Reef Marine Park-November 2000

    Google Scholar 

  • Masini RJ, Anderson PK, McComb AJ (2001) A Halodule-dominated community in a subtropical embayment: physical environment, productivity, biomass, and impact of dugong grazing. Aquat Bot 71:179–197

    Article  Google Scholar 

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR (2015) Marine defaunation: animal loss in the global ocean. Science 347:1255641

    Article  PubMed  CAS  Google Scholar 

  • McGlathery KJ (1995) Nutrient and grazing influences on a subtropical seagrass community. Mar Ecol Prog Ser 122:239–252

    Article  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • McSkimming C, Tanner JE, Russell BD, Connell SD (2015) Compensation of nutrient pollution by herbivores in seagrass meadows. J Exp Mar Biol Ecol 471:112–118

    Article  Google Scholar 

  • Mertens NL, Russell BD, Connell SD (2015) Escaping herbivory: ocean warming as a refuge for primary producers where consumer metabolism and consumption cannot pursue. Oecologia 179:1223–1229

    Article  PubMed  Google Scholar 

  • Moksnes P-O, Gullström M, Tryman K, Baden S (2008) Trophic cascades in a temperate seagrass community. Oikos 117:763–777

    Article  Google Scholar 

  • Murdoch WW (1966) Community structure, population control, and competition-a critique. Am Nat 100:219–226

    Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  PubMed  CAS  Google Scholar 

  • Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–1850

    Article  PubMed  CAS  Google Scholar 

  • Nakaoka M (2002) Predation on seeds of seagrasses Zostera marina and Zostera caulescens by a tanaid crustacean Zeuxo sp. Aquat Bot 72:99–106

    Article  Google Scholar 

  • Nakaoka M (2005) Plant–animal interactions in seagrass beds: ongoing and future challenges for understanding population and community dynamics. Popul Ecol 47:167–177

    Article  Google Scholar 

  • Newell RI (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–62

    Google Scholar 

  • Newell RI, Koch EW (2004) Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27:793–806

    Article  Google Scholar 

  • Nienhuis PH, Groenendijk AM (1986) Consumption of eelgrass (Zostera marina) by birds and invertebrates: an annual budget. Mar Ecol Prog Ser 29

    Google Scholar 

  • Norse EA (1993) Global marine biological diversity: a strategy for building conservation into decision making. Island Press

    Google Scholar 

  • Orth RJ (1975) Destruction of eelgrass, Zostera marina, by the cownose ray, Rhinoptera bonasus, in the Chesapeake Bay. Chesapeake Sci 16:205–208

    Article  Google Scholar 

  • Orth RJ, Van Montfrans J (1984) Epiphyte-seagrass relationships with an emphasis on the role of micrograzing: a review. Aquat Bot 18:43–69

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S et al (2006a) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Orth RJ, Kendrick GA, Marion SR (2006b) Predation on Posidonia australis seeds in seagrass habitats of Rottnest Island, Western Australia: patterns and predators. Mar Ecol Prog Ser 313:105–114

    Article  Google Scholar 

  • O’Connor Mary I (2009) Warming strengthens an herbivore–plant interaction. Ecol 90:388–398

    Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178

    Google Scholar 

  • Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49:667–685

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F (1998) Fishing down marine food webs. Science 279:860–863

    Article  PubMed  CAS  Google Scholar 

  • Peacor SD, Werner EE (2001) The contribution of trait-mediated indirect effects to the net effects of a predator. Proc Natl Acad Sci 98:3904–3908

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pearce AF, Feng M (2013) The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J Mar Syst 111:139–156

    Article  Google Scholar 

  • Peterson BJ, Heck KL Jr (2001) Positive interactions between suspension-feeding bivalves and seagrass-a facultative mutualism. Mar Ecol Prog Ser 213:143–155

    Article  Google Scholar 

  • Phillips RC, Menez EG (1988) Seagrasses. Smithsonian Contrib Mar Sci 34: 1–104

    Google Scholar 

  • Pinnegar JK, Polunin NVC, Francour P, Badalamenti F, Chemello R, Harmelin-Vivien M-L, Hereu B, Milazzo M, Zabala M, d’Anna G et al (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ Conserv 27:179–200

    Article  Google Scholar 

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 3–15

    Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147: 813–846

    Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT et al (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925

    Article  Google Scholar 

  • Poore AG, Campbell AH, Steinberg PD (2009) Natural densities of mesograzers fail to limit growth of macroalgae or their epiphytes in a temperate algal bed. J Ecol 97:164–175

    Article  Google Scholar 

  • Poore AG, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA et al (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922

    Article  PubMed  Google Scholar 

  • Powell GV, Fourqurean JW, Kenworthy WJ, Zieman JC (1991) Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuar Coast Shelf Sci 32:567–579

    Article  Google Scholar 

  • Prado P, Heck KL (2011) Seagrass selection by omnivorous and herbivorous consumers: determining factors. Mar Ecol Prog Ser 429:45–55

    Article  Google Scholar 

  • Prado P, Romero J, Alcoverro T et al (2010) Nutrient status, plant availability and seasonal forcing mediate fish herbivory in temperate seagrass beds. Mar Ecol Prog Ser 409:229–239

    Google Scholar 

  • Preen AR (1992) Interactions between dugongs and seagrasses in a subtropical environment, PhD Thesis. James Cook University

    Google Scholar 

  • Preen A (1995) Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Mar Ecol Prog Ser 124:201–213

    Article  Google Scholar 

  • Preen AR, Marsh H, Lawler IR, Prince RIT, Shepherd R (1997) Distribution and abundance of dugongs, turtles, dolphins and other megafauna in Shark Bay, Ningaloo Reef and Exmouth Gulf, Western Australia. Wildl Res 24:185–208

    Article  Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86: 501–509

    Google Scholar 

  • Randall JE (1965) Grazing effect on sea grasses by herbivorous reef fishes in the West Indies. Ecology 46:255–260

    Article  Google Scholar 

  • Reynolds LK, Carr LA, Boyer KE et al (2012) A non-native amphipod consumes eelgrass inflorescences in San Francisco Bay. Mar Ecol Prog Ser 451:107–118

    Google Scholar 

  • Reynolds PL, Richardson JP, Duffy JE (2014) Field experimental evidence that grazers mediate transition between microalgal and seagrass dominance. Limnol Oceanogr 59:1053–1064

    Article  Google Scholar 

  • Ricklefs R, Miller G (1999) Ecology. W.H. Freeman

    Google Scholar 

  • Roelofs A, Coles R, Smit N (2005) A survey of intertidal seagrass from Van Diemen Gulf to Castlereagh Bay, Northern Territory, and from Gove to Horn Island, Queensland. Queensland Department of Primary Industries and Fisheries: Brisbane, Qld, Australia.

    Google Scholar 

  • Rose CD, Sharp WC, Kenworthy WJ, Hunt JH, Lyons WG, Prager EJ, Valentine JF, Hall MO, Whitfield PE, Fourqurean JW (1999) Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay. Mar Ecol Prog Ser 190:211–222

    Article  Google Scholar 

  • Rosenblatt AE, Schmitz OJ (2014) Interactive effects of multiple climate change variables on trophic interactions: a meta-analysis. Clim Change Responses 1:8

    Article  Google Scholar 

  • Rossini RA, Rueda JL, Tibbetts IR (2014) Feeding ecology of the seagrass-grazing nerite Smaragdia souverbiana (Montrouzier, 1863) in subtropical seagrass beds of eastern Australia. J Molluscan Stud 80(2):139–147

    Google Scholar 

  • Rueda JL, Salas C (2007) Trophic dependence of the emerald neritid Smaragdia viridis (Linnaeus, 1758) on two seagrasses from European coasts. J Mollus Stud 73:211–214

    Article  Google Scholar 

  • Russell B, Connell S (2007) Response of grazers to sudden nutrient pulses in oligotrophic versus eutrophic conditions. Mar Ecol Prog Ser 349:73–80

    Article  Google Scholar 

  • Sanmart N, Saiz L, Llagostera I, Prez M, Romero J (2014) Tolerance responses to simulated herbivory in the seagrass Cymodocea nodosa. Mar Ecol Prog Ser 517:159–169

    Article  CAS  Google Scholar 

  • Schmitz OJ (2008) Effects of predator hunting mode on grassland ecosystem function. Science 319:952–954

    Article  PubMed  CAS  Google Scholar 

  • Schmitz OJ, Beckerman AP, O’Brien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–1399

    Article  Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Article  Google Scholar 

  • Sheppard JK, Carter AB, McKenzie LJ, Pitcher CR, Coles RG (2008) Spatial patterns of sub-tidal seagrasses and their tissue nutrients in the Torres Strait, northern Australia: implications for management. Cont Shelf Res 28: 2282–2291

    Google Scholar 

  • Sheppard JK, Marsh H, Jones RE, Lawler IR (2010) Dugong habitat use in relation to seagrass nutrients, tides, and diel cycles. Mar Mammal Sci 26:855–879

    Article  Google Scholar 

  • Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791

    Article  Google Scholar 

  • Simpfendorfer CA, Milward NE (1993) Utilisation of a tropical bay as a nursery area by sharks of the families Carcharhinidae and Sphyrnidae. Environ Biol Fish 37:337–345

    Article  Google Scholar 

  • Smale DA, Wernberg T (2013) Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc Lond B Biol Sci 280:20122829

    Article  Google Scholar 

  • Steele L, Valentine JF (2015) Seagrass deterrence to mesograzer herbivory: evidence from mesocosm experiments and feeding preference trials

    Google Scholar 

  • Strong DR (1992) Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73:747–754

    Article  Google Scholar 

  • Sumoski SE, Orth RJ (2012) Biotic dispersal in eelgrass Zostera marina. Mar Ecol Prog Ser 471:1–10

    Article  Google Scholar 

  • Targett NM, Targett TE, Vrolijk NH, Ogden JC (1986) Effect of macrophyte secondary metabolites on feeding preferences of the herbivorous parrotfish Sparisoma radians. Mar Biol 92:141–148

    Article  CAS  Google Scholar 

  • Thayer GW, Bjorndal KA, Ogden JC, Williams SL, Zieman JC (1984) Role of larger herbvores in seagrass communities. Estuaries 7: 351–376

    Google Scholar 

  • Thomson JA, Burkholder DA, Heithaus MR, Fourqurean JW, Fraser MW, Statton J, et al (2015) Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob Change Biol 21: 1463–1474

    Google Scholar 

  • Tomas F, Abbott JM, Steinberg C, Balk M, Williams SL, Stachowicz JJ (2011) Plant genotype and nitrogen loading influence seagrass productivity, biochemistry, and plant–herbivore interactions. Ecology 92: 1807–1817

    Google Scholar 

  • Valentine JF, Duffy JE (2006) The central role of grazing in seagrass ecology. Seagrasses: Biol, Ecol Conserv: 463–501

    Google Scholar 

  • Valentine JF, Heck KL (1991) The role of sea urchin grazing in regulating subtropical seagrass meadows: evidence from field manipulations in the northern Gulf of Mexico. J Exp Mar Biol Ecol 154:215–230

    Article  Google Scholar 

  • Valentine, J.F. & Heck Jr, K.L. (1999). Seagrass herbivory: evidence for the continued grazing of marine grasses. Marine Ecology Progress Series, 291–302.

    Google Scholar 

  • Valentine JF, Heck KL (2001) The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. J Exp Mar Biol Ecol 258:65–86

    Article  PubMed  CAS  Google Scholar 

  • Valentine JF, Heck KL, Busby J, Jr, Webb D (1997) Experimental evidence that herbivory increases shoot density and productivity in a subtropical turtlegrass (Thalassia testudinum) meadow. Oecologia 112:193–200

    Google Scholar 

  • van der Heide T, van Nes EH, Geerling GW, Smolders AJ, Bouma TJ, van Katwijk MM (2007) Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322

    Article  Google Scholar 

  • van der Heide T, van Nes EH, van Katwijk MM, Olff H, Smolders AJ (2011) Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. PLoS ONE 6:e16504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJP et al (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434

    Article  PubMed  CAS  Google Scholar 

  • van Gils JA, van der Geest M, Jansen EJ, Govers LL, de Fouw J, Piersma T (2012) Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry via competitive release of prey. Ecol 93:1143–1152

    Google Scholar 

  • van Montfrans J, Wetzel RL, Orth RJ (1984) Epiphyte-grazer relationships in seagrass meadows: consequences for seagrass growth and production. Estuaries 7:289–309

    Article  Google Scholar 

  • van Tussenbroek BI, Brearley A (1998) Isopod burrowing in leaves of turtle grass, Thalassia testudinum, in a Mexican Caribbean reef lagoon. Mar Freshw Res 49:525–531

    Article  Google Scholar 

  • van Tussenbroek BI, Muhlia-Montero M (2012) Can floral consumption by fish shape traits of seagrass flowers? Evol Ecol 27:269–284

    Article  Google Scholar 

  • van Tussenbroek BI, Monroy-Velazquez LV, Solis-Weiss V (2012) Meso-fauna foraging on seagrass pollen may serve in marine zoophilous pollination. Mar Ecol Prog Ser 469:1

    Article  Google Scholar 

  • Vergés A, Becerro MA, Alcoverro T, Romero J (2006) Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant–herbivore interactions. Oecologia 151:675–686

    Article  PubMed  Google Scholar 

  • Vergés A, Pérez M, Alcoverro T, Romero J (2008) Compensation and resistance to herbivory in seagrasses: induced responses to simulated consumption by fish. Oecologia 155:751–760

    Article  PubMed  Google Scholar 

  • Vergés A, Alcoverro T, Romero J (2010) Plant defences and the role of epibiosis in mediating within-plant feeding choices of seagrass consumers. Oecologia 166:381–390

    Article  PubMed  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E et al (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 20140846

    Google Scholar 

  • Verhoeven MPC, Kelaher BP, Bishop MJ, Ralph PJ (2012) Epiphyte grazing enhances productivity of remnant seagrass patches. Austral Ecol 37:885–892

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wassenberg T (1990) Seasonal feeding on Zostera capricorni seeds by Juvenile Penaeus esculentus (Crustacea: Decapoda) in Moreton Bay, Queensland. Mar Freshw Res 41:301–310

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106:12377–12381

    Article  PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011a) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16

    Article  Google Scholar 

  • Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJ, Poloczanska ES, Connell SD (2011b) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832

    Article  PubMed  CAS  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82

    Article  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Whalen MA, Duffy JE, Grace JB (2013) Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94:510–520

    Article  PubMed  Google Scholar 

  • White WT, Potter IC (2004) Habitat partitioning among four elasmobranch species in nearshore, shallow waters of a subtropical embayment in Western Australia. Mar Biol 145:1023–1032

    Article  Google Scholar 

  • White KS, Westera MB, Kendrick GA (2011) Spatial patterns in fish herbivory in a temperate Australian seagrass meadow. Estuar Coast Shelf Sci 93:366–374

    Article  Google Scholar 

  • Willette DA, Chalifour J, Debrot AOD, Engel MS, Miller J, Oxenford HA, Short FT, Steiner SCC, Védie F (2014) Continued expansion of the trans-Atlantic invasive marine angiosperm Halophila stipulacea in the Eastern Caribbean. Aquat Bot 112:98–102

    Article  Google Scholar 

  • Williams SL (2007) Introduced species in seagrass ecosystems: status and concerns. J Exp Mar Biol Ecol 350:89–110

    Article  Google Scholar 

  • Williams SL, Heck KL, Jr (2001) Seagrass community ecology. Marine Commun Ecol 317–337

    Google Scholar 

  • Wirsing AJ, Heithaus MR, Dill LM (2007a) Can you dig it? Use of excavation, a risky foraging tactic, by dugongs is sensitive to predation danger. Anim Behav 74:1085–1091

    Article  Google Scholar 

  • Wirsing AJ, Heithaus MR, Dill LM (2007b) Fear factor: do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia 153:1031–1040

    Article  PubMed  Google Scholar 

  • Wirsing AJ, Heithaus MR, Dill LM (2007c) Living on the edge: dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim Behav 74:93–101

    Article  Google Scholar 

  • Wirsing AJ, Cameron KE, Heithaus MR (2010) Spatial responses to predators vary with prey escape mode. Anim Behav 79:531–537

    Article  Google Scholar 

  • Worm B, Lotze HK (2006) Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnol Oceanogr 51:569–579

    Article  Google Scholar 

  • Worm B, Davis B, Kettemer L, Ward-Paige CA, Chapman D, Heithaus MR, Kessel ST, Gruber SH (2013) Global catches, exploitation rates, and rebuilding options for sharks. Marine Policy 40:194–204

    Article  Google Scholar 

  • Wressnig A, Booth DJ (2007) Feeding preferences of two seagrass grazing monacanthid fishes. J Fish Biol 71:272–278

    Article  Google Scholar 

  • Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M et al (2012) Enhanced warming over the global subtropical western boundary currents. Nat Clim Change 2:161–166

    Article  CAS  Google Scholar 

  • Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336:1516–1518

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman RC, Kohrs DG, Alberte RS (1996) Top-down impact through a bottom-up mechanism: the effect of limpet grazing on growth, productivity and carbon allocation of Zostera marina L. (eelgrass). Oecologia 107:560–567

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors for their invitation to write this chapter, and R. Sarabia for comments on an early copy of the manuscript. Financial support for RN was provided by Florida International University and by NSF GRF No. DGE-1038321. This is contribution number 81 from the Shark Bay Ecosystem Research Project (SBERP) and contribution number 12 from the Marine Education and Research Center (MERC) in the Institute for Water and the Environment at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Nowicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nowicki, R.J., Fourqurean, J.W., Heithaus, M.R. (2018). The Role of Consumers in Structuring Seagrass Communities: Direct and Indirect Mechanisms. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_16

Download citation

Publish with us

Policies and ethics