Skip to main content

Direct Borohydride Fuel Cells—Current Status, Issues, and Future Directions

  • Chapter
  • First Online:
Anion Exchange Membrane Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 63))

Abstract

Fuel cells using borohydride as the fuel will be reviewed in this chapter. A direct borohydride fuel cell (DBFC) is a device that converts chemical energy stored in borohydride ion (\({\text{BH}}_{4}^{ - }\)) and an oxidant directly into electricity by redox processes. DBFC has some attractive features such as high open circuit potential, low operational temperature, and high power density. Both electro-oxidation of \({\text{BH}}_{4}^{ - }\) and electro-reduction of oxidant take place on a large variety of precious and non-precious materials. DBFCs share similarities in terms of electrode preparation methods, fuel cell system design, etc. with PEFCs, which have been developed more extensively. Therefore, in this chapter, fuel cell technology, particularly PEFC, will be first reviewed to better understand materials and components of DBFC. Then the chapter continues to discuss prominent features of DBFC, and finally points out potential future direction of DBFC research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ma, N.A. Choudhury, Y. Sahai, A comprehensive review of direct borohydride fuel cells. Renew. Sustain. Energy Rev. 14(1), 183–199 (2010)

    Article  Google Scholar 

  2. M.E. Indig, R.N. Snyder, Sodium borohydride, an interesting anodic fuel. J. Electrochem. Soc. 109, 1104–1106 (1962)

    Article  Google Scholar 

  3. S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman, M. Binder, A novel high power density borohydride-air cell. J. Power Sources 84, 130–133 (1999)

    Article  Google Scholar 

  4. S.M. Javaid Zaidi, T. Matsuura, Polymer Membranes for Fuel Cells (Springer, LLC, Berlin, New York, 2009)

    Book  Google Scholar 

  5. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 6058 (2011)

    Article  Google Scholar 

  6. U.S Department of Energy, http://energy.gov/sites/prod/files/2014/08/f18/ fcto_fuel_cells_ comparison_chart.pdf

  7. National Renewable Energy Laboratory, 1–10 kW Stationary combined heat and power systems status and technical potential (NREL/BK-6A10-48265, 2010; www.nrel.gov/docs/fy10osti/48265.pdf)

  8. G.T.R. Palmore, G.M. Whitesides, in Microbial and Enzymatic Biofuel Cells, Enzymatic Conversion of Biomass for Fuels Production, ed. by M.E. Himmel, J.O. Baker, R.P. Overend (American Chemical Society, Washington, DC, 1994)

    Google Scholar 

  9. Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)

    Article  Google Scholar 

  10. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 44 (2012)

    Article  Google Scholar 

  11. S.S. Ivanchev, Fluorinated proton-conduction Nafion-type membranes, the past and the future. Russ. J. Appl. Chem. 81(4), 569–584 (2008)

    Article  Google Scholar 

  12. G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41(15), 5829–5838 (2000)

    Article  Google Scholar 

  13. R.N. Basu, Recent Trends in Fuel Cell Science and Technology. (Anamaya Publishers, New Delhi, India)

    Google Scholar 

  14. T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138(8), 2334–2342 (1991)

    Article  Google Scholar 

  15. T.A. Zawodzinski Jr., T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, S. Gottesfeld, A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J. Electrochem. Soc. 140, 1981–1985 (1993)

    Article  Google Scholar 

  16. J. Benziger, A. Bocarsly, M.J. Cheah, P. Majsztrik, B. Satterfield, Q. Zhao, Mechanical and transport properties of Nafion: effects of temperature and water activity. Struct. Bond 141, 85–113 (2011)

    Article  Google Scholar 

  17. F. Barbir, PEM fuel cells, in Fuel Cell Technology Reaching Towards Commercialization, ed. by N. Sammes (Springer, London, 2006)

    Google Scholar 

  18. T.R. Ralph, M.P. Hogarth, Catalysis for low temperature fuel cells Part I: the cathode challenges. Platin. Met. Rev. 46(1), 3–14 (2002)

    Google Scholar 

  19. J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers Fundamentals and Applications (Springer, London, 2008)

    Book  Google Scholar 

  20. B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152(2), 1–15 (2005)

    Google Scholar 

  21. H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra, E.K. Hyde, J. Am. Chem. Soc. 75, 215 (1953)

    Article  Google Scholar 

  22. Y. Wu, M.T. Kelly, J.V. Ortega (2004), Available from: http://www.hydrogen.energy.gov/

  23. U.S. Department of Energy Hydrogen Program. Independent review. http://www.hydrogen.energy

  24. G. Broja, W. Schlabacher, DE Patent 1108670; 1959

    Google Scholar 

  25. Z.P. Li, N. Morigasaki, B.H. Liu, S. Suda, J. Alloys. Compd. 349, 232 (2003)

    Article  Google Scholar 

  26. Y. Kojima, T. Haga, Int. J. Hydrogen Energy 28, 989 (2003)

    Article  Google Scholar 

  27. Z.P. Li, B.H. Liu, N. Morigasaki, S. Suda, J. Alloys. Compd. 354(1–2), 243 (2003)

    Article  Google Scholar 

  28. D. Goerrig, W. Schabacher, F. Schubert, DB Patent 1036222, 1956

    Google Scholar 

  29. S. Suda, N. Morigazaki, Y. Iwase, Z.P. Li, J. Alloys. Compd. 404–406, 643 (2005)

    Article  Google Scholar 

  30. C. Cakanyldrm, M. Guru, Int. J. Hydrogen Energy 33, 4634 (2008)

    Article  Google Scholar 

  31. Z.P. Li, B.H. Liu, N. Morigasaki, S. Suda, J. Alloys. Compd. 354, 243 (2003)

    Article  Google Scholar 

  32. H. Zhang, S. Zheng, F. Fang, G. Chen, G. Sang, D. Sun, J. Alloys. Compd. 484, 352 (2009)

    Article  Google Scholar 

  33. A. Roine, HSC chemistry: v5.0. Pori: Outokompu Research Oy, 2004

    Google Scholar 

  34. S.C. Amendola, M.T. Kelly, US Patent 6433129, 2002

    Google Scholar 

  35. S.C. Amendola, M.T. Kelly, J.V. Ortega, Y. Wu, US Patent 6670444, 2003

    Google Scholar 

  36. S.C. Amendola, M.T. Kelly, Y. Wu, US Patent 6524542, 2003

    Google Scholar 

  37. E.L. Gyenge, C.W. Oloman, J. Appl. Electrochem. 28, 1147 (1998)

    Article  Google Scholar 

  38. H.B.H. Cooper, Electrocatalytic Process for the Production of Alkali Metal Borohydrides, US Patent 3,734,842, 1973

    Google Scholar 

  39. A.E. Sanli, I. Kayacan, B.Z. Uysal, M.L. Aksu, J. Power Sources 195, 2604 (2010)

    Article  Google Scholar 

  40. Z.P. Li, B.H. Liu, K. Arai, S. Suda, J. Alloys Compd. 404–406, 648–652 (2005)

    Article  Google Scholar 

  41. J.H. Morris, H.J. Gysing, D. Reed, Electrochemistry of boron compounds. Chem. Rev. 85, 51–76 (1985)

    Article  Google Scholar 

  42. J.A. Gardiner, J.W. Collat, Kinetics of stepwise hydrolysis of tetrahydroborate ion. J. Am. Chem. Soc. 87, 1692–1700 (1965)

    Article  Google Scholar 

  43. B.H. Liu, S. Suda, Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell. J. Alloys Compd. 454, 280–285 (2008)

    Article  Google Scholar 

  44. M.C.S. Escaño, E. Gyenge, R.L. Arevalo, H. Kasai, Reactivity descriptors for borohydride interaction with metal surfaces. J. Phys. Chem. C115, e19883–e19889 (2011)

    Google Scholar 

  45. M.V. Mirkin, H. Yang, A.J. Bard, Borohydride oxidation at a gold electrode. J. Electrochem. Soc. 139, 2212–2217 (1992)

    Article  Google Scholar 

  46. R.X. Feng, H. Dong, Y.D. Wang, X.P. Ai, Y.L. Cao, H.X. Yang, A simple and high efficient direct borohydride fuel cell with MnO2-catalyzed cathode. Electrochem. Commun. 7, 449–452 (2005)

    Article  Google Scholar 

  47. H. Celikkana, M. Şahin, M.L. Aksu, T.N. Veziroğlu, The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions. Int. J. Hydrogen. Energy 32, 588–593 (2007)

    Article  Google Scholar 

  48. M. Chatenet, F. Micoud, I. Roche, E. Chainet, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte Part I. \({\text{BH}}_{4}^{ - }\) electro-oxidation on Au and Ag catalysts. Electrochim. Acta 51, 5459–5467 (2006)

    Article  Google Scholar 

  49. E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim. Acta 49, 965–978 (2004)

    Article  Google Scholar 

  50. E. Gyenge, M.H. Atwan, D.O. Northwood, Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-Alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application for direct borohydride fuel cell anodes. J. Electrochem. Soc. 153, A150–A158 (2006)

    Article  Google Scholar 

  51. B. Molina Concha, M. Chatenet, Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media Part I: Bulk electrodes. Electrochimica Acta 54, 6119–6129 (2009)

    Article  Google Scholar 

  52. E. Sanlı, H. Çelikkan, B. Zühtü Uysal, M. Levent Aksu, Anodic behavior of Ag metal electrode in direct borohydride fuel cells. Int. J. Hydrogen. Energy 31, 1920–1924 (2006)

    Article  Google Scholar 

  53. B.H. Liu, Z.P. Li, S. Suda, Electrocatalysts for the anodic oxidation of borohydrides. Electrochim. Acta 49, 3097–3105 (2004)

    Article  Google Scholar 

  54. B.H. Liu, Z.P. Li, S. Suda, Anodic oxidation of alkali borohydrides catalyzed by nickel. J. Electrochem. Soc. 150, A398–A402 (2003)

    Article  Google Scholar 

  55. B.H. Liu, Z.P. Li, S. Suda, Development of high-performance planar borohydride fuel cell modules for portable applications. J. Power Sources 175, 226–231 (2008)

    Article  Google Scholar 

  56. Z.P. Li, B.H. Liu, J.K. Zhu, S. Suda, Depression of hydrogen evolution during operation of a direct borohydride fuel cell. J. Power Sources 163, 555–559 (2006)

    Article  Google Scholar 

  57. B.H. Liu, Z.P. Li, S. Suda, A study on performance stability of the passive direct borohydride fuel cell. J. Power Sources 185, 1257–1261 (2008)

    Article  Google Scholar 

  58. H. Cheng, K. Scott, K. Lovell, Material aspects of the design and operation of direct borohydride fuel cells. Fuel Cells 6, 367–375 (2006)

    Article  Google Scholar 

  59. M.H. Atwan, D.O. Northwood, E.L. Gyenge, Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells. Int. J. Hydrogen Energy 32, 3116–3125 (2007)

    Article  Google Scholar 

  60. M.H. Atwan, C.L.B. Macdonald, D.O. Northwood, E.L. Gyenge, Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance. J. Power Sources 158, 36–44 (2006)

    Article  Google Scholar 

  61. P.Y. He, X.Y. Wang, Y.J. Liu, X. Liu, L.H. Yi, Comparison of electrocatalytic activity of carbon-supported Au-M (M = Fe, Co, Ni, Cu and Zn) bimetallic nanoparticles for direct borohydride fuel cells. Int. J. Hydrogen Energy 37(16), 11984–11993 (2006)

    Article  Google Scholar 

  62. R.X. Feng, H. Dong, Y.L. Cao, X.P. Ai, H.X. Yang, Agni-catalyzed anode for direct borohydride fuel cells. Int. J. Hydrogen Energy 32, 4544–4549 (2007)

    Article  Google Scholar 

  63. R. Jamard, A. Latour, J. Salomon, P. Capron, A. Martinent-Beaumont, Study of fuel efficiency in a direct borohydride fuel cell. J. Power Sources 176, 287–292 (2008)

    Article  Google Scholar 

  64. X. Geng, H. Zhang, W. Ye, Y. Ma, H. Zhong, Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell. J. Power Sources 185, 627–632 (2008)

    Article  Google Scholar 

  65. J. Ma, Y. Sahai, R. Buchheit, Direct borohydride fuel cell using Ni-based composite anodes. J. Power Sources 195, 4709–4713 (2010)

    Article  Google Scholar 

  66. M.D. Hampton, D.V. Shur, S.Y. Zaginaichenko, V.I. Trefilov, Hydrogen Materials Science and Chemistry of Metal Hydrides, NATO Science Series, vol. 71 (Kluwer Academic Publishers, Dodrecht, Boston, London, 2002)

    Book  Google Scholar 

  67. H.A. Kiehne, Battery Technology Handbook, 2nd edn. (Expert Verlag GmbH, Renningen-Malsheim, Germany, 2003)

    Book  Google Scholar 

  68. A.K. Shukla, S. Venugopalan, B. Hariprakash, Nickel-based rechargeable batteries. J. Power Sources 100, 125–148 (2001)

    Article  Google Scholar 

  69. S.M. Lee, J.H. Kim, H.H. Lee, P.S. Lee, J.Y. Lee, The characterization of an alkaline fuel cell that uses hydrogen storage alloys. J. Electrochem. Soc. 149, A603–A606 (2002)

    Article  Google Scholar 

  70. B.H. Liu, Z.P. Li, E. Higuchi, S. Suda, Improvement of the electrochemical properties of Zr-based AB2 alloys by an advanced fluorination technique. J. Alloys. Compd. 293–295, 702–706 (1999)

    Article  Google Scholar 

  71. Z.P. Li, B.H. Liu, K. Arai, S. Suda, A fuel cell development for using borohydrides as the fuel. J. Electrochem. Soc. 150, A868–A872 (2003)

    Article  Google Scholar 

  72. B.H. Liu, S. Suda, Influences of fuel crossover on cathode performance in a micro borohydride fuel cell. J. Power Sources 164, 100–104 (2007)

    Article  Google Scholar 

  73. M. Chatenet, F. Micoud, I. Roche, E. Chainet, J. Vondrák, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte Part II. O2 reduction. Electrochim. Acta 51, 5452–5458 (2006)

    Article  Google Scholar 

  74. H.Y. Qin, Z.X. Liu, W.X. Yin, J.K. Zhu, Z.P. Li, A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell. J. Power Sources 185, 909–912 (2008)

    Article  Google Scholar 

  75. Y. He, C. Zhu, K.J. Chen, J. Wang, H.Y. Qin, J.B. Liu, S. Yan, K. Yang, A.G. Li, Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell. J. Power Sources 339(30), 13–19 (2017)

    Article  Google Scholar 

  76. A. Verma, A.K. Jha, S. Basu, Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte. J. Power Sources 141, 30–34 (2005)

    Article  Google Scholar 

  77. Y.G. Wang, Y.Y. Xia, A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. Electrochem. Commun. 8, 1775–1778 (2006)

    Article  Google Scholar 

  78. X.M. Ni, Y. Wang, Y.L. Cao, X.P. Ai, H.X. Yang, M. Pan, A highly efficient and BH(4)(−) tolerant Eu2O3-catalyzed cathode for direct borohydride fuel cells. Electrochem. Commun. 12(5), 710–712 (2010)

    Article  Google Scholar 

  79. X.D. Yang, X.Z. Wei, C. Liu, Y.N. Liu, The electrocatalytic application of RuO2 in direct borohydride fuel cells. Mater. Chem. Phys. 145(3), 269–273 (2014)

    Article  Google Scholar 

  80. J. Ma, Y. Liu, Y. Liu, Y. Yan, P. Zhang, A membraneless direct borohydrie fuel cell using LaNiO3-catalysed cathode. Fuel Cells 8, 394–398 (2008)

    Article  Google Scholar 

  81. H. Cheng, K. Scott, Investigation of non-platinum cathode catalysts for direct borohydride fuel cells. J. Electroanal. Chem. 596, 117–123 (2006)

    Article  Google Scholar 

  82. J. Ma, Y. Liu, P. Zhang, J. Wang, A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode. Electrochem. Commun. 10, 100–102 (2008)

    Article  Google Scholar 

  83. J. Ma, J. Wang, Y. Liu, Iron phthalocyanine as a cathode catalyst for a direct borohydride fuel cell. J. Power Sources 172, 220–224 (2007)

    Article  Google Scholar 

  84. A. Serov, A. Aziznia, P.H. Benhangi, K. Artyushkova, P. Atanassov, E. Gyenge, Borohydride-tolerant oxygen electroreduction catalyst for mixed-reactant Swiss-roll direct borohydride fuel cells. J. Mater. Chem. 1(45), 14384–14391 (2013)

    Article  Google Scholar 

  85. N. Luo, G.H. Miley, R. Gimlin, R. Burton, Hydrogen-peroxide-based fuel cells for space power systems. J. Propul. Power 24, 583–589 (2008)

    Article  Google Scholar 

  86. N.A. Choudhury, R.K. Raman, S. Sampath, A.K. Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J. Power Sources 143, 1–8 (2005)

    Article  Google Scholar 

  87. R.K. Raman, N.A. Choudhury, A.K. Shukla, A high output voltage direct borohydride fuel cell. Electrochem. Solid-State Lett. 7, A488–A491 (2004)

    Article  Google Scholar 

  88. N. Luo, G.H. Miley, K.J. Kim, R. Burton, X. Huang, NaBH4/H2O2 fuel cells for air independent power systems. J. Power Sources 185, 685–690 (2008)

    Article  Google Scholar 

  89. L. Gu, N. Luo, G.H. Miley, Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell. J. Power Sources 173, 77–85 (2007)

    Article  Google Scholar 

  90. R.K. Raman, A.K. Shukla, Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells. J. Appl. Electrochem. 35, 1157–1161 (2005)

    Article  Google Scholar 

  91. G. Selvarani, S.K. Prashant, A.K. Sahu, P. Sridhar, S. Pitchumani, A.K. Shukla, A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst. J. Power Sources 178, 86–91 (2008)

    Article  Google Scholar 

  92. T.H. Oh, B. Jang, S. Kwon, Performance evaluation of direct borohydride-hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes. Energy. 76, 911–919 (2014)

    Article  Google Scholar 

  93. Y.Z. Chen, S.J. Dong, S. Li, Y.N. Liu, W. Yan, Preparation and growth of n-doped hollow carbon nanospheres and their application as catalyst support in direct borohydride fuel cell. J. Nanosci. Nanotechnol. 15(5), 3862–3869 (2015)

    Article  Google Scholar 

  94. G.R. Li, Q.Q. Wang, B.H. Liu, Z.P. Li, Porous carbon as anode catalyst support to improve borohydride utilization in a direct borohydride fuel cell. Fuel Cells. 15(2), 270–277 (2015)

    Article  Google Scholar 

  95. J.H. Kim, H.S. Kim, Y.M. Kang, M.S. Song, S. Rajendran, S.C. Han et al., Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J. Electrochem. Soc. 151, A1039–A1043 (2004)

    Article  Google Scholar 

  96. H. Cheng, K. Scott, Investigation of Ti mesh-supported anodes for direct borohydride fuel cells. J. Appl. Electrochem. 36, 1361–1366 (2006)

    Article  Google Scholar 

  97. C. Ponce de Leo´n, D.V. Bavykin, F.C. Walsh, The oxidation of borohydride ion at titanate nanotube supported gold electrodes. Electrochem. Commun. 8, 1655–1660 (2006)

    Article  Google Scholar 

  98. P. Munnik, P.E. de Jongh, K.P. de Jong, Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687–6718 (2015)

    Article  Google Scholar 

  99. C. Ponce de Leo´n, F.C. Walsh, D. Pletcher, D.J. Browning, J.B. Lakeman, Direct borohydride fuel cells. J. Power Sources 155, 172–181 (2006)

    Article  Google Scholar 

  100. C. Ponce de Leo´n, F.C. Walsh, A. Rose, J.B. Lakeman, D.J. Browning, R.W. Reeve, A direct borohydride—acid peroxide fuel cell. J. Power Sources 164, 441–448 (2007)

    Article  Google Scholar 

  101. B.H. Liu, Z.P. Li, K. Arai, S. Suda, Performance improvement of a micro borohydride fuel cell operating at ambient conditions. Electrochim. Acta 50, 3719–3725 (2005)

    Article  Google Scholar 

  102. H. Cheng, K. Scott, K.V. Lovell, J.A. Horsfall, S.C. Waring, Evaluation of new ion exchange membranes for direct borohydride fuel cells. J. Membr. Sci. 288, 168–174 (2007)

    Article  Google Scholar 

  103. J. Ma, N.A. Choudhury, Y. Sahai, R.G. Buchheit, Performance study of direct borohydride fuel cells employing polyvinyl alcohol hydrogel membrane and nickel-based anode. Fuel Cells 11(5), 603–610 (2011)

    Article  Google Scholar 

  104. P.L. Ng, A. Jamaludin, Y. Alias, W.J. Basirun, Z.A. Ahmad, A.A. Mohamad, Effect of KOH concentration in the gel polymer electrolyte for direct borohydride fuel cell. J. Appl. Polymer Sci. 123(5), 2662–2666 (2012)

    Article  Google Scholar 

  105. A. Jamaludin, Z. Ahmad, Z.A. Ahmad, A.A. Mohamad, A direct borohydride fuel cell employing a sago gel polymer electrolyte. Int. J. Hydrogen Energy 35(20), 11229–11236 (2010)

    Article  Google Scholar 

  106. J. Ma, Y. Sahai, Chitosan biopolymer for fuel cell applications. Carbohyd. Polym. 92(2), 955–975 (2013)

    Article  Google Scholar 

  107. J. Ma, N.A. Choudhury, Y. Sahai, R.G. Buchheit, A high performance direct borohydride fuel cell employing cross-linked chitosan membrane. J. Power Sources 196(20), 8257–8264 (2011)

    Article  Google Scholar 

  108. J. Ma, Y. Sahai, R.G. Buchheit, Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. J. Power Sources 202(15), 18–27 (2012)

    Article  Google Scholar 

  109. C.G. Arges, V. Prabhakaran, L.H. Wang, V. Ramani, Bipolar polymer electrolyte interfaces for hydrogen-oxygen and direct borohydride fuel cells. Int. J. Hydrogen Energy. 39(26), 14312–14321 (2014)

    Article  Google Scholar 

  110. K.T. Park, U.H. Jung, S.U. Jeong, S.H. Kim, Influence of anode diffusion layer properties on performance of direct borohydride fuel cell. J. Power Sources 162, 192–197 (2006)

    Article  Google Scholar 

  111. A. Verma, S. Basu, Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell. J. Power Sources 145, 282–285 (2005)

    Article  Google Scholar 

  112. G.H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu et al., Direct NaBH4/H2O2 fuel cells. J. Power Sources 165, 509–516 (2007)

    Article  Google Scholar 

  113. J. Ma, Y. Sahai, Effect of electrode fabrication method and substrate material on performance of alkaline fuel cells. Electrochem. Commun. 30, 63–66 (2013)

    Article  Google Scholar 

  114. C. Kim, K.J. Kim, M.Y. Ha, Performance enhancement of a direct borohydride fuel cell in practical running conditions. J. Power Sources 180, 154–161 (2008)

    Article  Google Scholar 

  115. F.A. Coowar, G. Vitins, G.O. Mepsted, S.C. Waring, J.A. Horsfall, Electrochemical oxidation of borohydride at nano-gold-based electrodes: application in direct borohydride fuel cells. J. Power Sources 175, 317–324 (2008)

    Article  Google Scholar 

  116. H. Yang, T.S. Zhao, Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochim. Acta 50, 3243–3252 (2005)

    Article  Google Scholar 

  117. N. Duteanu, G. Vlachogiannopoulos, M.R. Shivhare, E.H. Yu, K. Scott, A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell. J. Appl. Electrochem. 37, 1085–1091 (2007)

    Article  Google Scholar 

  118. C. Celik, F.G.B. San, H.I. Sarac, Effects of operation conditions on direct borohydride fuel cell performance. J. Power Sources 185, 197–201 (2008)

    Article  Google Scholar 

  119. J.I. Martins, M.C. Nunes, R. Koch, L. Martins, M. Bazzaoui, Electrochemical oxidation of borohydride on platinum electrodes: The influence of thiourea in direct fuel cells. Electrochim. Acta 52, 6443–6449 (2007)

    Article  Google Scholar 

  120. U.B. Demirci, Comments on the paper “Electrooxidation of borohydride on platinum and gold electrodes: Implications for direct borohydride fuel cell” by E. Gyenge, Electrochim. Acta 49 (2004) 965: Thiourea, a poison for the anode metallic electrocatalyst of the direct borohydride fuel cell? Electrochim. Acta. 52, 5119–5121 (2007)

    Google Scholar 

  121. Gyenge E, Reply to “Comments on the paper [‘Electrooxidation of borohydride on platinum and gold electrodes: Implications for direct borohydride fuel cells’ by E. Gyenge, Electrochim. Acta 49 (2004) 965]: Thiourea, a poison for the anode metallic electrocatalyst of the direct borohydride fuel cell?” by U¨ .B. Demirci, Electrochim. Acta 52 (2007) 5119. Electrochim. Acta. 52, 5122–5123 (2007)

    Google Scholar 

  122. J.H. Koh, H.K. Seo, C.G. Lee, Y.S. Yoo, H.C. Lim, Pressure and flow distribution in internal gas manifolds of a fuel-cell stack. J. Power Sources 115, 54–65 (2003)

    Article  Google Scholar 

  123. B.H. Liu, Z.P. Li, J.K. Zhua, S. Suda, Influences of hydrogen evolution on the cell and stack performances of the direct borohydride fuel cell. J. Power Sources 183, 151–156 (2008)

    Article  Google Scholar 

  124. C. Kim, K.J. Kim, M.Y. Ha, Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications. J. Power Sources 180, 114–121 (2008)

    Article  Google Scholar 

  125. J.H. Wee, A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells. J. Power Sources 155, 329–339 (2006)

    Article  Google Scholar 

  126. J. Ma, Y. Sahai, A direct borohydride fuel cell with thin film anode and polymer hydrogel membrane. ECS Electrochem. Lett. 1(6), F41–F43 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogeshwar Sahai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, J., Sahai, Y. (2018). Direct Borohydride Fuel Cells—Current Status, Issues, and Future Directions. In: An, L., Zhao, T. (eds) Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-71371-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71371-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71370-0

  • Online ISBN: 978-3-319-71371-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics