Skip to main content

Pathophysiology of Tennis Injuries: The Kinetic Chain

  • Chapter
  • First Online:
Tennis Medicine
  • 1850 Accesses

Abstract

The tennis serve is a complex dynamic activity involving the entire body. Serving results in repetitive high velocity, high load, and large range of motion demands on all parts of the body. Understanding the normal mechanics that produce function and the pathomechanics associated with dysfunction will enable clinicians to optimize performance and minimize injury risk. This chapter describes the kinetic chain mechanics in function and dysfunction and suggests implications for clinical evaluation and rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kibler WB, Kuhn JE, Wilk K, et al. The disabled throwing shoulder: spectrum of pathology-10-year update. Arthroscopy. 2013;29(1):141–161.e126.

    Article  Google Scholar 

  2. Lintner D, Noonan TJ, Kibler WB. Injury patterns and biomechanics of the athlete’s shoulder. Clin Sports Med. 2008;27(4):527–51.

    Article  Google Scholar 

  3. Kovacs M, Ellenbecker T. An 8-stage model for evaluating the tennis serve: implications for performance enhancement and injury prevention. Sports Health. 2011;3(6):504–13.

    Article  Google Scholar 

  4. Sciascia A, Thigpen C, Namdari S, Baldwin K. Kinetic chain abnormalities in the athletic shoulder. Sports Med Arthrosc. 2012;20(1):16–21.

    Article  Google Scholar 

  5. Davids K, Glazier P, Arajuo D, Bartlett R. Movement systems as dynamic systems, the functional role of variability and its implications for sports medicine. Sports Med. 2003;33(4):245–60.

    Article  Google Scholar 

  6. Sporns O, Edelman GM. Solving Bernstein’s problem: a proposal for the development of coordinated movement by selection. Child Dev. 1993;64(4):960–81.

    Article  CAS  Google Scholar 

  7. Elliott BC, Marshall RN, Noffal GJ. Contributions of upper limb segment rotations during the power serve in tennis. J Appl Biomech. 1995;11:433–42.

    Article  Google Scholar 

  8. Toyoshima S, Miyashita M. Force-velocity relation in throwing. Res Q. 1973;44(1):86–95.

    CAS  PubMed  Google Scholar 

  9. Hirashima M, Yamane K, Nakamura Y, Ohtsuki T. Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis. J Biomech. 2008;41(13):2874–83.

    Article  Google Scholar 

  10. Hirashima M, Kadota H, Sakurai S, Kudo K, Ohtsuki T. Sequential muscle activity and its functional role in the upper extremity and trunk during overarm throwing. J Sports Sci. 2002;20(4):301–10.

    Article  Google Scholar 

  11. Hirashima M, Kudo K, Watarai K, Ohtsuki T. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players. J Neurophysiol. 2007;97(1):680–91.

    Article  Google Scholar 

  12. Putnam CA. Sequential motions of body segments in striking and throwing skills: description and explanations. J Biomech. 1993;26:125–35.

    Article  Google Scholar 

  13. Fleisig GS, Andrews JR, Dillman CJ, Escamilla RF. Kinetics of baseball pitching with implications about injury mechanisms. Am J Sports Med. 1995;23(2):233–9.

    Article  CAS  Google Scholar 

  14. Fleisig GS, Barrentine SW, Escamilla RF, Andrews JR. Biomechanics of overhand throwing with implications for injuries. Sports Med. 1996;21:421–37.

    Article  CAS  Google Scholar 

  15. Young JL, Herring SA, Press JM, Casazza BA. The influence of the spine on the shoulder in the throwing athlete. J Back Musculoskelet Rehabil. 1996;7:5–17.

    CAS  PubMed  Google Scholar 

  16. Nieminen H, Niemi J, Takala EP, Viikari-Juntura E. Load-sharing patterns in the shoulder during isometric flexion tasks. J Biomech. 1995;28(5):555–66.

    Article  CAS  Google Scholar 

  17. Fleisig G, Nicholls R, Elliott B, Escamilla R. Kinematics used by world class tennis players to produce high-velocity serves. Sports Biomech. 2003;2(1):51–64.

    Article  Google Scholar 

  18. Marshall RN, Elliott BC. Long-axis rotation: the missing link in proximal-to-distal segmental sequencing. J Sports Sci. 2000;18(4):247–54.

    Article  CAS  Google Scholar 

  19. Elliott B, Fleisig G, Nicholls R, Escamilia R. Technique effects on upper limb loading in the tennis serve. J Sci Med Sport. 2003;6(1):76–87.

    Article  CAS  Google Scholar 

  20. Martin C, Kulpa R, Ropars M, Delamarche P, Bideau B. Identification of temporal pathomechanical factors during the tennis serve. Med Sci Sports Exerc. 2013;45(11):2113–9.

    Article  Google Scholar 

  21. Martin C, Bideau B, Bideau N, Nicolas G, Delamarche P, Kulpa R. Energy flow analysis during the tennis serve: comparison between injured and noninjured tennis players. Am J Sports Med. 2014;42:2751.

    Article  Google Scholar 

  22. Lippitt SB, Vanderhooft JE, Harris SL, Sidles JA, Harryman DT, Matsen FA. Glenohumeral stability from concavity-compression: a quantitative analysis. J Shoulder Elbow Surg. 1993;2(1):27–35.

    Article  CAS  Google Scholar 

  23. DiGiovine NM, Jobe FW, Pink M, Perry J. An electromyographic analysis of the upper extremity in pitching. J Shoulder Elbow Surg. 1992;1(1):15–25.

    Article  CAS  Google Scholar 

  24. Speer K, Garrett W. Muscular control of motion and stability about the pectoral girdle. The shoulder: a balance of mobility and stability. Rosemont, IL: AAOS; 1994. p. 159–73.

    Google Scholar 

  25. Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med. 1998;26(2):325–37.

    Article  CAS  Google Scholar 

  26. Harryman DT, Sidles JA, Clark JM, McQuade KJ, Gibb TD, Matsen FA. Translation of the humeral head on the glenoid with passive glenohumeral motion. J Bone Joint Surg. 1990;72-A(9):1334–43.

    Article  Google Scholar 

  27. Grossman MG, Tibone JE, McGarry MH, Schneider DJ, Veneziani S, Lee TQ. A cadaveric model of the throwing shoulder: a possible etiology of superior labrum anterior-to-posterior lesions. J Bone Joint Surg Am. 2005;87(4):824–31.

    PubMed  Google Scholar 

  28. Wilk KE, Meister K, Andrews JR. Current concepts in the rehabilitation of the overhead throwing athlete. Am J Sports Med. 2002;30(1):136–51.

    Article  Google Scholar 

  29. Veeger HE, van der Helm FC. Shoulder function: the perfect compromise between mobility and stability. J Biomech. 2007;40(10):2119–29.

    Article  CAS  Google Scholar 

  30. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189–98.

    Article  Google Scholar 

  31. Glazier PS, Davids K. Constraints on the complete optimization of human motion. Sports Med. 2009;39(1):15–28.

    Article  Google Scholar 

  32. Bernstein NA. The co-ordination and regulation of movements. Oxford: Pergamon Press; 1967.

    Google Scholar 

  33. Kibler WB, Wilkes T, Sciascia A. Mechanics and pathomechanics in the overhead athlete. Clin Sports Med. 2013;32(4):637–51.

    Article  Google Scholar 

  34. Elliott B, Wood G. The biomechanics of the foot-up and foot-back tennis service techniques. Aust J Sports Sci. 1983;3(2):3–6.

    Google Scholar 

  35. Bahamonde RE. Changes in angular momentum during the tennis serve. J Sports Sci. 2000;18(8):579–92.

    Article  CAS  Google Scholar 

  36. Campbell A, Straker L, O’Sullivan P, Elliott B, Reid M. Lumbar loading in the elite adolescent tennis serve: link to low back pain. Med Sci Sports Exerc. 2013;45(8):1562–8.

    Article  Google Scholar 

  37. Reid M, Elliott B, Alderson J. Shoulder joint loading in the high performance flat and kick tennis serves. Br J Sports Med. 2007;41(12):884–9. Discussion 889.

    Article  Google Scholar 

  38. Whiteside D, Elliott B, Lay B, Reid M. The effect of age on discrete kinematics of the elite female tennis serve. J Appl Biomech. 2013;29(5):573–82.

    Article  Google Scholar 

  39. Martin C, Bideau B, Ropars M, Delamarche P, Kulpa R. Upper limb joint kinetic analysis during tennis serve: assessment of competitive level on efficiency and injury risks. Scand J Med Sci Sports. 2014;24(4):700–7.

    Article  CAS  Google Scholar 

  40. Girard O, Micallef JP, Millet GP. Influence of restricted knee motion during the flat first serve in tennis. J Strength Cond Res. 2007;21(3):950–7.

    PubMed  Google Scholar 

  41. Myers NL, Kibler WB, Lamborn L, Smith BJ, English RA, Jacobs C, Uhl TL. Reliability and validity of a biomechanically based analysis method for the tennis serve. Int J Sports Phys Ther. 2017;12(3):437.

    PubMed  PubMed Central  Google Scholar 

  42. Myers NL, Kibler WB, Capilouto GJ, Westgate P, English RA, Uhl TL. Reliabiity of an observational method used to asses tennis serve mechanics in a group of novice raters. J Med Sci Tennis. 2017;22(3):6–12.

    Google Scholar 

  43. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology Part I: pathoanatomy and biomechanics. Arthroscopy. 2003;19(4):404–20.

    Article  Google Scholar 

  44. Kibler WB. Biomechanical analysis of the shoulder during tennis activities. Clin Sports Med. 1995;14:79–85.

    CAS  PubMed  Google Scholar 

  45. Burkhart SS, Morgan CD, Kibler WB. Shoulder injuries in overhead athletes, the “dead arm” revisited. Clin Sports Med. 2000;19(1):125–58.

    Article  CAS  Google Scholar 

  46. Vad VB, Bhat AL, Basrai D, Gebeh A, Aspergren DD, Andrews JR. Low back pain in professional golfers: the role of associated hip and low back range-of-motion deficits. Am J Sports Med. 2004;32(2):494–7.

    Article  Google Scholar 

  47. Robb AJ, Fleisig G, Wilk K, Macrina L, Bolt B, Pajaczkowski J. Passive ranges of motion of the hips and their relationship with pitching biomechanics and ball velocity in professional baseball pitchers. Am J Sports Med. 2010;38(12):2487–93.

    Article  Google Scholar 

  48. Kibler WB, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am Acad Orthop Surg. 2003;11:142–51.

    Article  Google Scholar 

  49. Nadler SF, Malanga GA, Feinberg JH, Prybicien M, Stitik TP, DePrince M. Relationship between hip muscle imbalance and occurrence of low back pain in collegiate athletes: a prospective study. Am J Phys Med Rehabil. 2001;80(8):572–7.

    Article  CAS  Google Scholar 

  50. Nadler SF, Malanga GA, Bartoli LA, Feinberg JH, Prybicien M, Deprince M. Hip muscle imbalance and low back pain in athletes: influence of core strengthening. Med Sci Sports Exerc. 2002;34(1):9–16.

    Article  Google Scholar 

  51. Wilk KE, Macrina LC, Fleisig GS, et al. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers. Am J Sports Med. 2011;39(2):329–35.

    Article  Google Scholar 

  52. Kibler WB, Sciascia A, Thomas SJ. Glenohumeral internal rotation deficit: pathogenesis and response to acute throwing. Sports Med Arthrosc. 2012;20(1):34–8.

    Article  Google Scholar 

  53. Silliman JF, Hawkins RJ. Classification and physical diagnosis of instability of the shoulder. Clin Orthop Relat Res. 1993;291:7–19.

    Google Scholar 

  54. Butterfield TA. Eccentric exercise in vivo: strain-induced muscle damage and adaptation in a stable system. Exerc Sport Sci Rev. 2010;38(2):51–60.

    Article  Google Scholar 

  55. Lukasiewicz A, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999;29(10):574–83. discussion 584–576.

    Article  CAS  Google Scholar 

  56. Borstad JD, Ludewig PM. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther. 2005;35(4):227–38.

    Article  Google Scholar 

  57. Kebaetse M, McClure P, Pratt N. Thoracic position effect on shoulder range of motion, strength, and three-dimensional scapular kinetics. Arch Phys Med Rehabil. 1999;80:945–50.

    Article  CAS  Google Scholar 

  58. Mihata T, McGarry MH, Kinoshita M, Lee TQ. Excessive glenohumeral horizontal abduction as occurs during the late cocking phase of the throwing motion can be critical for internal impingement. Am J Sports Med. 2010;38(2):369–74.

    Article  Google Scholar 

  59. Weiser WM, Lee TQ, McMaster WC, McMahon PJ. Effects of simulated scapular protraction on anterior glenohumeral stability. Am J Sports Med. 1999;27(6):801–5.

    Article  CAS  Google Scholar 

  60. Mihata T, Jun BJ, Bui CN, et al. Effect of scapular orientation on shoulder internal impingement in a cadaveric model of the cocking phase of throwing. J Bone Joint Surg. 2012;94(17):1576–83.

    Article  Google Scholar 

  61. McMullen J, Uhl TL. A kinetic chain approach for shoulder rehabilitation. J Athl Train. 2000;35(3):329–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilk KE, Macrina LC, Arrigo C. Passive range of motion characteristics in the overhead baseball pitcher and their implications for rehabilitation. Clin Orthop Relat Res. 2012;470(6):1586–94.

    Article  Google Scholar 

  63. Ellenbecker TS, Cools A. Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: an evidence-based review. Br J Sports Med. 2010;44(5):319–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie L. Myers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Myers, N.L., Kibler, W.B. (2018). Pathophysiology of Tennis Injuries: The Kinetic Chain. In: Di Giacomo, G., Ellenbecker, T., Kibler, W. (eds) Tennis Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-71498-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71498-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71497-4

  • Online ISBN: 978-3-319-71498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics