Skip to main content

Abstract

The comet assay is one of the techniques that has been extensively used to assess DNA damage in both the somatic cells and the spermatozoa over the past years. The results are robust and, as difference with other strategies to assess DNA damage, information about the presence of single-strand breaks (SSBs) or double-strand breaks (DSBs) can be obtained. The characterization of SSBs and DSBs profiles provides a more comprehensive analysis of sperm DNA quality for their clinical application. In this chapter, the utility comet assay as a diagnostic test for male infertility and as a prognostic test for assisted reproductive techniques is summarized.

The characterization of SSB and DSB profiles provides a more comprehensive analysis of sperm DNA quality for potential clinical application. In this chapter, we describe the different types of comet assay strategies to assess for the presence of SSBs and/or DSBs. Additionally, some characteristics related to the presence of alkali-labile sites in alkaline comet are also presented. The utility of the comet assay as a diagnostic test for male infertility and as a prognostic test for assisted reproductive techniques is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    Article  CAS  PubMed  Google Scholar 

  2. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis: new insights in stage specificity and link to chromatin remodelling. Biol Reprod. 2004;70:910–8.

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.

    Article  PubMed  Google Scholar 

  4. Sotolongo B, Lino E, Ward WS. Ability of hamster spermatozoa to digest their own DNA. Biol Reprod. 2003;69:2029–35.

    Article  CAS  PubMed  Google Scholar 

  5. Li TK, Chen AY, Yu C, Mao Y, Wang H, Liu LF. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 1999;13:1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yakovlev AG, Wang G, Stoica BA, Boulares HA, Spoonde AY, Yoshihara K, Smulson ME. A role of the Ca21/Mg21-dependent endonuclease in apoptosis and its inhibition by Poly(ADP-ribose) polymerase. J Biol Chem. 2000;275:21302–8.

    Article  CAS  PubMed  Google Scholar 

  7. Boulares AH, Zoltoski AJ, Sherif ZA, Yakovlev AG, Smulson ME. The Poly (ADP-ribose) polymerase-1-regulated endonuclease DNAS1L3 is required for etoposide-induced internucleosomal DNA fragmentation and increases etoposide cytotoxicity in transfected osteosarcoma cells. Cancer Res. 2002;62:4439–44.

    CAS  PubMed  Google Scholar 

  8. Boulares AH, Zoltoski AJ, Contreras FJ, Yakovlev AG, Yoshihara K, Smulson ME. Regulation of DNAS1L3 endonuclease activity by poly (ADP-ribosyl)ation during etoposide-induced apoptosis. Role of poly (ADP-ribose) polymerase-1 cleavage in endonuclease activation. J Biol Chem. 2002;277:372–8.

    Article  CAS  PubMed  Google Scholar 

  9. Solovyan VT, Bezvenyuk ZA, Salminen A, Austin CA, Courtney MJ. The role of topoisomerase II in the excision of DNA loop domains during apoptosis. J Biol Chem. 2002;277:21458–67.

    Article  CAS  PubMed  Google Scholar 

  10. Ribas-Maynou J, García-Peiró A, Martínez-Heredia J, Fernández-Encinas A, Abad C, Amengual MJ, Navarro J, Benet J. Nuclear degraded sperm subpopulation is affected by poor chromatin compaction and nuclease activity. Andrologia. 2015;47:286–94.

    Article  CAS  PubMed  Google Scholar 

  11. Sotolongo B, Huang TT, Isenberger E, Ward WS. An endogenous nuclease in hamster, mouse, and human spermatozoa cleaves DNA into loop-sized fragments. J Androl. 2005;26:272–80.

    Article  CAS  PubMed  Google Scholar 

  12. Cortés-Gutiérrez EI, López-Fernández C, Fernández JL, Dávila-Rodríguez MI, Johnston SD, Gosálvez J. Interpreting sperm DNA damage in a diverse range of mammalian sperm by means of the two-tailed comet assay. Front Genet. 27. 2014;5:404.

    PubMed  PubMed Central  Google Scholar 

  13. Laberge RM, Boissonneault G. On the nature of DNA strand breaks in elongating spermatids. Biol Reprod. 2005;73:289–96.

    Article  CAS  PubMed  Google Scholar 

  14. Reiter TA. NO∗ chemistry: a diversity of targets in the cell. Redox Rep. 2006;11:194–206.

    Article  CAS  PubMed  Google Scholar 

  15. Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin. Mutat Res. 1992;275:331–42.

    Article  CAS  PubMed  Google Scholar 

  16. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.

    Article  CAS  PubMed  Google Scholar 

  17. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123:291–8.

    Article  CAS  PubMed  Google Scholar 

  18. Olive PL, Wlodek D, Banath JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 1991;51:4671–6.

    CAS  PubMed  Google Scholar 

  19. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  20. Fernández JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24:59–66.

    Article  PubMed  Google Scholar 

  21. Enciso M, Sarasa J, Agarwal A, Fernández JL, Gosálvez J. A two-tailed comet assay for assessing DNA damage in spermatozoa. Reprod BioMed Online. 2009;5:609–16.

    Article  Google Scholar 

  22. McMillan TJ, Tobi S, Mateos S, Lemon C. The use of DNA double-strand break quantification in radiotherapy. Int J Radiat Oncol Biol Phys. 2001;49:373–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ribas-Maynou J, García-Peiró A, Abad C, Amengual MJ, Navarro J, Benet J. Alkaline and neutral comet assay profiles of sperm DNA damage in clinical groups. Hum Reprod. 2012;27:652–8.

    Article  CAS  PubMed  Google Scholar 

  24. Brooks JE. Properties and uses of restriction endonucleases. Methods Enzymol. 1987;152:113–29.

    Article  CAS  PubMed  Google Scholar 

  25. Singh NP, Stephens RE. X-ray induced DNA double-strand breaks in human sperm. Mutagenesis. 1998;13:75–9.

    Article  CAS  PubMed  Google Scholar 

  26. Cortés-Gutiérrez EI, Dávila-Rodríguez MI, López-Fernández C, Fernández JL, Crespo F, Gosálvez J. Localization of alkali-labile sites in donkey (Equus asinus) and stallion (Equus caballus) spermatozoa. Theriogenology. 2014;81:321–5.

    Google Scholar 

  27. Fernández JL, Vázquez-Gundin F, Delgado A, Goyanes VJ, Ramiro-Díaz J, de la Torre J, Gosálvez J (2000) DNA breakage detection-FISH (DBD-FISH) in human spermatozoa: technical variants evidence different structural features. Mutat Res 453:77–82.

    Google Scholar 

  28. López-Fernández C, Arroyo F, Fernández JL, Gosálvez J. Interstitial telomeric sequence blocks in constitutive pericentromeric heterochromatin from Pyrgomorpha conica (Orthoptera) are enriched in constitutive alkali-labile sites. Mutat Res. 2006;599:36–44.

    Article  PubMed  Google Scholar 

  29. Rivero MT, Mosquera A, Goyanes V, Slijepcevic P, Fernández JL. Differences in repair profiles of interstitial telomeric sites between normal and DNA double-strand break repair deficient Chinese hamster cells. Exp Cell Res. 2004;295:161–72.

    Article  CAS  PubMed  Google Scholar 

  30. Evenson DP, Kasperson K, Wixon RL. Analysis of sperm DNA fragmentation using flow cytometry and other techniques. Soc Reprod Fertil. 2007;65:93–113.

    CAS  Google Scholar 

  31. Tice RR, Andrews PW, Singh NP. The single cell gel assay: a sensitive technique for evaluating intercellular differences in DNA damage and repair. Basic Life Sci. 1990;53:291–301.

    CAS  PubMed  Google Scholar 

  32. Olive PL, Johnston PJ, Banath JP, Durand RE. The alkaline comet assay: a new method to examine heterogeneity associated with solid tumours. Nat Med. 1998;4:103–5.

    Article  CAS  PubMed  Google Scholar 

  33. Fairbairn DW, Olive PL, O’Neill KL. The alkaline comet assay: a comprehensive review. Mutat Res. 1995;339:37–59.

    Article  CAS  PubMed  Google Scholar 

  34. McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Meo MP, Collins A. The single cell gel electrophoresis assay (alkaline comet assay): a European review. Mutat Res. 1993;288:47–63.

    Article  CAS  PubMed  Google Scholar 

  35. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. Reproducibility of human sperm DNA measurements using the alkaline single cell gel electrophoresis assay. Mutat Res. 1997;374:261–8.

    Article  CAS  PubMed  Google Scholar 

  36. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.

    CAS  PubMed  Google Scholar 

  37. Leroy T, Van Hummelen P, Anard D, Castelain P, Kirsch Volders M, Lauwerys R, Lison D. Evaluation of three methods for the detection of DNA single-strand breaks in human lymphocytes: alkaline elution, nick translation and single-cell gel electrophoresis. J Toxicol Environ Health. 1996;47:409–22.

    Article  CAS  PubMed  Google Scholar 

  38. Lewis SE, Simon L. Clinical implications of sperm DNA damage. Hum Fertil. 2010;13:201–7.

    Article  Google Scholar 

  39. Enciso M, Sarasa J, Agarwal A, Fernàndez JL, Gosálvez J. A two-tailed comet assay for assessing DNA damage in spermatozoa. Reprod BioMed Online. 2009;18:609–16.

    Article  PubMed  Google Scholar 

  40. Gosálvez J, Rodríguez-Predreira M, Mosquera A, López Fernández C, Esteves SC, Agarwal A, Ferández JL. Characterisation of a subpopulation of sperm with massive nuclear damage, as recognised with the sperm chromatin dispersion test. Andrologia. 2014;46:602–9.

    Article  PubMed  Google Scholar 

  41. Nuñez R, López-Fernández C, Arroyo F, Caballero P, Gosálvez J. Characterization of sperm DNA damage in Kartagener’s syndrome with recurrent fertilization failure: case revisited. Sex Reprod Health. 2010;1:73–5.

    Article  Google Scholar 

  42. Esteves SC, Gosálvez J, López-Fernández C, Núñez-Calonge R, Caballero P, Agarwal A, Fernández JL. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol. 2015;47:1471–7.

    Article  CAS  PubMed  Google Scholar 

  43. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265:20662–6.

    CAS  PubMed  Google Scholar 

  44. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996;2:613–9.

    Article  CAS  PubMed  Google Scholar 

  45. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis P, Claussen OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    Article  CAS  PubMed  Google Scholar 

  46. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.

    Article  CAS  PubMed  Google Scholar 

  47. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22:604–10.

    CAS  PubMed  Google Scholar 

  48. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75:674–7.

    Article  CAS  PubMed  Google Scholar 

  49. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60:1069–72.

    Article  PubMed  Google Scholar 

  50. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27:414–20.

    Article  PubMed  Google Scholar 

  51. Marchetti F, Bishop JB, Cosentino L, Moore D 2nd, Wyrobek AJ. Paternally transmitted chromosomal aberrations in mouse zygotes determine their embryonic fate. Biol Reprod. 2004;70:616–24.

    Article  CAS  PubMed  Google Scholar 

  52. Nanassy L, Carrell DT. Paternal effects on early embryogenesis. J Exp Clin Assist Reprod. 2008;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lewis SEM, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis. 2008;23:163–70.

    Article  CAS  PubMed  Google Scholar 

  54. Chi HJ, Chung DY, Choi SY, Kim JH, Kim GY, Lee JS, Lee HS, Kim MH, Roh SI. Integrity of human sperm DNA assessed by the neutral comet assay and its relationship to semen parameters and clinical outcomes for the IVF-ET program. Clin Exp Reprod Med. 2011;38:10–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ribas-Maynou J, Gardía-Peiró A, Fernández-Encinas A, Amengual MJ, Prada E, Cortés P, Navarro J, Benet J. Double stranded sperm DNA breaks, measured by comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One. 2012;7:e44679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simon L, Lutton D, McManus J, Lewis SE. Sperm DNA damage measured by the alkaline comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril. 2011;95:652–7.

    Article  PubMed  Google Scholar 

  57. Ramzan MH, Ramzan M, Khan MM, Ramzan F, Wahabb F, Khan MA, Jillani M, Shah M. Human semen quality and sperm DNA damage assessed by comet assay in clinical groups. Turk J Med Sci. 2015;45:729–37.

    Article  CAS  PubMed  Google Scholar 

  58. Simon L, Proutski I, Stevenson M, Jennings D, McManus J, Lutton D, Lewis SE. Sperm DNA damage has negative association with live-birth rates after IVF. Reprod BioMed Online. 2012;26:68–78.

    Article  PubMed  Google Scholar 

  59. Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, Hotaling J, Carrell DT. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29:2402–12.

    Article  CAS  PubMed  Google Scholar 

  60. Agbaje IM, Rogers DA, McVicar CM, McClure N, Atkinson AB, Mallidis C, Lewis SE. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22:1871–7.

    Article  CAS  PubMed  Google Scholar 

  61. Dalzell LH, McVicar CM, McClure N, Lutton D, Lewis SE. Effects of short and long incubations on DNA fragmentation of testicular sperm. Fertil Steril. 2004;82:1443–5.

    Article  PubMed  Google Scholar 

  62. O’Neill DA, McVicar CM, McClure N, Maxwell P, Cookie I, Pogue KM, Lewis SE. Reduced sperm yield from testicular biopsies of vasectomized men is due to increase apoptosis. Fertil Esteril. 2007;87:834–41.

    Article  Google Scholar 

  63. Fatehi AN, Bevers MM, Schoevers E, Roelen BA, Colenbrander B, Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27:176–88.

    Article  CAS  PubMed  Google Scholar 

  64. Marchetti F, Essers J, Kanaar R, Wyrobek KJ. Disruption of DNA repair increases sperm derived chromosomal aberrations. Proc Natl Acad Sci U S A. 2007;104:17725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gawecka JE, Marh J, Ortega M, Yamauchi Y, Ward MA, Ward WS. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One. 2013;8:e56385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fernandez-Gonzalez R, Moreira PN, Perez-Crespo M, Sanchez-Martin M, Ramirez MA, Pericuesta E, Bilbao A, Bermejo-Alvarez P, de Dios Hourcade J, de Fonseca FR, Gutiérrez-Adán A. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78:761–72.

    Article  CAS  PubMed  Google Scholar 

  67. Hales BF. DNA repair disorders causing malformations. Curr Opin Genet Dev. 2005;15:234–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elva I. Cortés-Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortés-Gutiérrez, E.I., Dávila-Rodríguez, M.I., López-Fernández, C. (2018). The Comet Assay. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics