Skip to main content

Genetic Improvement of Local Goats

  • Chapter
  • First Online:
Sustainable Goat Production in Adverse Environments: Volume I

Abstract

Genetic improvement of domestic animals through selection of the breeding stock, including small ruminants like goats, has been acknowledged as a powerful tool. It has been used by mankind for the supply of the most varied products, and for increasing productivity and global yields. During the next decades, genetic improvement of goat populations can be a key factor for livestock in extreme conditions, being resistant to conditions resulting from climate change, and diseases, and providing good quality products in many regions of the globe. In a general program of genetic improvement and selection of goats, it will be fundamental to monitor the genetic progress and make the right choices of future breeders to achieve the genetic improvement of a herd. A selection plan should have well- defined improvement objectives, which will obviously differ according to whether the systems are for producing goat meat, dairy, dual purpose, or other more specific products (e.g., wool). Techniques and methodologies of selection have evolved at a remarkable rate, from individual selection to best linear unbiased prediction (BLUP) and genomics, allowing us to obtain ever more efficient and precise results when we combine different methodologies and information sources. The aim of this chapter is to present and discuss the breeding goals and selection strategies used in genetic improvement programs of goat populations and local breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abegaz S, Gizaw S, Dessie T et al (2014) Optimizing alternative schemes of community-based breeding programs for two Ethiopian goat breeds. Acta Agrar Kaposváriensis 18(Suppl. 1):47–55

    Google Scholar 

  • Arnason T, Van Vleck LD (2000) Genetic improvement of the horse. In: Bowling AT, Ruvinsky A (eds) The genetics of the horse. CABI Publishing, New York, US, pp 473–497

    Chapter  Google Scholar 

  • Avendaño SB, Villanueva B, Woolliams JA (2003) Expected increases in genetic merit from using optimized contributions in two livestock populations of beef cattle and sheep. J Anim Sci 81(12):2964–2975

    Article  PubMed  Google Scholar 

  • Barillet F, Mariat D, Amigues Y et al (2009) Identification of seven haplotypes of the caprine PrP gene at codons 127, 142, 154, 211, 222 and 240 in French Alpine and Saanen breeds and their association with classical scrapie. J Gen Virol 90(Pt 3):769–776

    Article  CAS  PubMed  Google Scholar 

  • Blasco (2013) Animal breeding methods and sustainability. In: Paul Christou P, Savin R, Costa-Pierce BA, et al (eds) Sustainable food production. Springer, New York, US, pp 41–57

    Google Scholar 

  • Bourdon RM (1997) Understanding animal breeding. Prentice Hall, New Jersey, US

    Google Scholar 

  • Bourdon R, Golden B (2000) EPDs & economics determining the relative importance of traits. Beef Magazine, 1 Feb 2000. Available at: http://www.beefmagazine.com/mag/beef_epds_economics_determining

  • Brito LF, Kijas JW, Ventura RV et al (2017) Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genom 18:229. https://doi.org/10.1186/s12864-017-3610-0

    Article  Google Scholar 

  • Burrow HM, Gulbransen B, Johnson SK et al (1991) Consequences of selection for growth and heat resistance on growth, feed conversion efficiency, commercial carcass traits and meat quality of zebu crossbred cattle. Aust J Agric Res 42:1373–1383

    Article  Google Scholar 

  • Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86(1):6–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardellino (2016) Preface. In: Vargas Bayona JE, Zaragoza Martínez L, Delgado Bermejo JV, et al (eds) Biodiversidad caprina Iberoamericana. Universidad Cooperativa de Colombia, Bogotá, Colombia, pp 57–74

    Google Scholar 

  • Carolino N (2006) Estratégias de selecção na raça bovina Alentejana. Ph.D. thesis. Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisbon, Portugal

    Google Scholar 

  • Carolino N, Bruno de Sousa B, Carolino I et al (2016) Biodiversidade caprina em Portugal. In: Vargas Bayona JE, Zaragoza Martínez L, Delgado Bermejo JV et al (eds) Biodiversidad caprina Iberoamericana. Universidad Cooperativa de Colombia, Bogotá, Colombia, pp 57–74

    Google Scholar 

  • Cunningham EP, Moen RA, Gjedrem T (1970) Restriction of selection indexes. Biometrics 26(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • De los Campos G, Sorensen D, Gianola D (2015) Genomic heritability: what is it? PLoS Genet 11(5):e1005048. https://doi.org/10.1371/journal.pgen.1005048

  • De Rancourt M, Fois N, Lavin MP et al (2005) Mediterranean sheep and goats production: an uncertain future. Small Rum Res 62(3):167–179

    Article  Google Scholar 

  • Dekkers JCM, Gibson JP, Bijma P et al (2004) Design and optimisation of animal breeding programmes—lecture notes, Iowa State University, Ames, US. Available at: http://www.anslab.iastate.edu/Class/AnS652X/chapter1.pdf

  • Dekkers JCM, Schook GE (1990) Genetic and economic evaluation of nucleus breeding schemes for commercial artificial insemination firms. J Dairy Sci 73(7):1920–1937

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Burnt Mill, England, Longman, UK

    Google Scholar 

  • FAO (2010) Breeding strategies for sustainable management of animal genetic resources. FAO animal production and health guidelines. No. 3, Rome, Italy. Available at: http://www.fao.org/docrep/012/i1103e/i1103e.pdf

  • FAO (2013) Milk and dairy products in human nutrition, Rome, Italy. Available at http://www.fao.org/docrep/018/i3396e/i3396e.pdf

  • Fonseca PD (2015) Avaliação da raça Serpentina nos seus sistemas de produção. Ph.D. thesis. Universidade de Évora, Évora, Portugal

    Google Scholar 

  • Gama LT (2002) Melhoramento Genético Animal. Escolar Editora, Lisboa, Portugal

    Google Scholar 

  • Gibson JP, Kennedy BW (1990) The use of constrained selection indexes in breeding for economic merit. Theor Appl Genet 80(6):801–805

    Article  CAS  PubMed  Google Scholar 

  • Graser H (1994) The value of recording scrotal size and days to calving. Animal Genetics and Breeding Unit, University of New England Armidale NSW 235. Technical Information, Note I/1994

    Google Scholar 

  • Grundy B, Villanueva B, Wooliams JA (1998) Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genet Res Camb 92(2):159–168

    Article  Google Scholar 

  • Grundy B, Villaneuva B, Woolliams JA (2000) Dynamic selection for maximizing response with constrained inbreeding in schemes with overlapping generations. Anim Sci 70(3):373–382

    Article  Google Scholar 

  • Gunia M, Mandonnet N, Arquet R et al (2012) Economic values of body weight, reproduction and parasite resistance traits for a Creole goat breeding goal. Animal 7(1):22–33

    Article  PubMed  Google Scholar 

  • Haenlein GFW (2004) Goat milk in human nutrition. Small Rum Res 51(2):155–163

    Article  Google Scholar 

  • Hall BK, Hallgrímsson B (2008) Strickberger’s Evolution, 4th edn. John Bartlett Publishers, Sudbury, Massachusetts, US

    Google Scholar 

  • Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28:476–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson CR (1994) Applications of linear models in animal breeding. University of Guelph, Ontario, Canada, Third printing

    Google Scholar 

  • Kinghorn BP, Simm G (1999) Genetic improvement of beef cattle. In: Fries R, Ruvinsky A (eds) Genetics of cattle. CAB International, Wallingford, Oxon, UK

    Google Scholar 

  • Koots KR, Gibson JP (1998) Economic values for beef production traits from a herd level bioeconomic model. Can J Anim Sci 78(1):29–45

    Article  Google Scholar 

  • Leroux C, Martin P, Mahe MF et al (1990) Restriction-fragment-length-polymorphism identification of goat alpha-S1-casein alleles—a potential tool in selection of individuals carrying alleles associated with a high-level protein-synthesis. Anim Genet 21(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Bovenhuis H, van Son M et al (2017) Using markers with large effect in genetic and genomic predictions. J Anim Sci 95(1):59–71

    CAS  PubMed  Google Scholar 

  • Martin P, Palhière I, Maroteau C et al (2017) A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content. Sci Rep 7(1):1872. https://doi.org/10.1038/s41598-017-02052-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin P, Tosser-Klopp G, Rupp R (2016) Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats. J Dairy Sci 99(11):8891–8900

    Article  CAS  PubMed  Google Scholar 

  • Matukumalli LK, Lawley CT, Schnabel RD et al (2009) Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 4(4):e5350. https://doi.org/10.1371/journal.pone.0005350

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavrogenis AP (1995) Breeding systems, selection strategies for sheep improvement in Cyprus. Options Mediterraneénnes, vol 2, CIHEAM, Paris, France

    Google Scholar 

  • Ménissier F (1988) La sélection des races bovines à viande spécialisées en France. 3ème Cong. Mond. Reprod. Sél. Ovins et Bovins à viande, 2:215–236. Paris, France

    Google Scholar 

  • Meuwissen TH (1997) Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci 75(4):934–940

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen TH, Sonesson AK (1998) Maximizing the response of selection with a predefined rate of inbreeding: overlapping generations. J Anim Sci 76(10):2575–2583

    Article  CAS  PubMed  Google Scholar 

  • Miranda-de la Lama GC, Mattiello S (2010) The importance of social behaviour for goat welfare in livestock farming. Small Rum Res 90(1–3):1–10

    Article  Google Scholar 

  • Morand-Fehr P (1991) Goat nutrition. Pudoc Wageningen, Wageningen, The Netherlands

    Google Scholar 

  • Mrode RA (1996) Linear models for the prediction of animal breeding values. CAB International, Oxon, UK

    Google Scholar 

  • Mueller JP (2006) Breeding and conservation programs with local communities. FAOWAAP expert meeting “Sustainable Utlilization of Animal Genetic Resources”, Ferentillo, Italy, 2–4 July 2006. Technical communication No PA 489

    Google Scholar 

  • Muir WM (2000) The interaction of selection intensity, inbreeding depression, and random genetic drift on short and long-term response to selection: results using finite locus and finite population size models incorporating directional dominance. J Anim Sci 79 (E-Suppl. 1):1–11

    Google Scholar 

  • Neopane SP, Pokharel PK (2005) Genetic gain in selected herds of Khari goats over generations in Nepal. AGTR Case Study. Nairobi, Kenya. Available at: ILRI. http://hdl.handle.net/10568/3577

  • Oldenbroek K, van der Waaij L (2014) Textbook Animal Breeding and Genetics for BSc students. Centre for Genetic Resources and Animal Breeding and Genomics Group, Wageningen University and Research Centre, The Netherlands. Avaible at: http://www.wur.nl/upload_mm/d/b/b/614bcc19-036f-434e-9d40-609364ab26da_Textbook%20Animal%20Breeding%20and%20Genetics-v17-20151122_1057.pdf

  • Onzima RB, Gizaw S, Kugonza DR, et al (2017) Production system and participatory identification of breeding objective traits for indigenous goat breeds of Uganda. Small Rum Res. (In Press, Corrected Proof) https://dx.doi.org/10.1016/j.smallrumres.2017.07.007

  • Pailhoux E, Vigier B, Chaffaux S et al (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 29(4):453–458

    Article  CAS  PubMed  Google Scholar 

  • Pellerin AN, Browning R Jr (2012) Comparison of Boer, Kiko, and Spanish meat goat does for stayability and cumulative reproductive output in the humid subtropical southeastern United States. BMC Vet Res 8:136. https://doi.org/10.1186/1746-6148-8-136

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Enciso M, Rincón JC, Legarra A (2015) Sequence- vs. Chip-assisted genomic selection: accurate biological information is advised. Genet Sel Evol 47:43. https://doi.org/10.1186/s12711-015-0117-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Philipsson J, Rege JEO, Zonabend E, et al (2011) Sustainable breeding programmes for tropical farming systems In: Ojango JM, Malmfors B, Okeyo AM (eds) Animal genetics training resource, version 3, 2011. International Livestock Research Institute, Nairobi, Kenya, and Swedish University of Agricultural Sciences, Uppsala, Sweden

    Google Scholar 

  • Phocas F, Belloc C, Bidanel J et al (2016) Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies. Animal 10(11):1760–1769

    Article  CAS  PubMed  Google Scholar 

  • Ponzoni RW, Newman S (1989) Developing breeding objectives for Australian beef cattle production. Anim Prod 49(1):35–47

    Article  Google Scholar 

  • Quinton M, Smith C, Goddard ME (1992) Comparison of selection methods at the same level of inbreeding. J Anim Sci 70(4):1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Ramos AM, Crooijmans RP, Affara NA et al (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4(8):e6524. https://doi.org/10.1371/journal.pone.0006524

    Article  PubMed  PubMed Central  Google Scholar 

  • Roden JA (1994) Review of the theory of open nucleus breeding system. Anim Breed Abstr 62:151–157

    Google Scholar 

  • Ronningen K, Van Vleck LD (1985) Selection index theory with practical applications. In: Chapman AB (ed) General and quantitative genetics. Elsevier Science Publishers, Amsterdam, The Netherland

    Google Scholar 

  • Rupp R, Mucha S, Larroque H et al (2016) Genomic application in sheep and goat breeding. Animal Front 6(1):39–44

    Article  Google Scholar 

  • Sejian V, Hyder I, Ezeji T, et al (2015) Global warming: role of livestock. In: Sejian V, Gaughan J, Baumgard L, et al (eds) Climate change impact on livestock: adaptation and mitigation. Springer Publisher, New Delhi, India, pp 141–170

    Google Scholar 

  • Shumbusho F, Raoul J, Astruc JM et al (2013) Potential benefits of genomic selection on genetic gain of small ruminant breeding programs. J Anim Sci 91(8):3644–3657

    Article  CAS  PubMed  Google Scholar 

  • Shumbusho F, Raoul J, Astruc JM et al (2016) Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program. Animal 10(6):1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Simm G (1998) Genetic improvement of cattle and sheep. Farming Press—Miller Freedman UK Ltd., Ipswich, UK

    Google Scholar 

  • Sonesson AK, Woolliams JA, Meuwissen TH (2012) Genomic selection requires genomic control of inbreeding. Genet Sel Evol 44:27. https://doi.org/10.1186/1297-9686-44-27

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorensen AC, Sorensen MK, Berg P (2005) Inbreeding in Danish dairy cattle breeds. J Dairy Sci 88(5):1865–1872

    Article  CAS  PubMed  Google Scholar 

  • United Nations (2017) Revision of world population prospect. Available at: https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html

  • Van der Steen HAM, Prall GFW, Plastow GS (2005) Application of genomics to the pork industry. J Anim Sci 83(E. Suppl.):E1–E8

    Google Scholar 

  • Van der Werf JHJ (2000) Livestock straight breeding system structures for the sustainable intensification of extensive grazing systems. In: Galal S, Boyazoglu J, Hammond K (eds) Workshop on developing breeding strategies for lower input animal production environments ICAR Technical Series, vol 3, pp 105–178

    Google Scholar 

  • Verrier E, Colleau JJ, Foulley JL (1994) Le modèle animal est-il optimal a moyen terme? In: Foulley JL, Molénat M (eds) Séminaire modèle animal, 26-29 septembre 1994. La-Colle-sur-Loup, France, pp 57–66

    Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era– concepts and misconceptions. Nat Rev Genet 9(4):255–266

    Article  CAS  PubMed  Google Scholar 

  • Weigel KA (2001) Controlling inbreeding in modern breeding programs. J Dairy Sci 84 (E. Suppl.):E177–E184

    Google Scholar 

  • Wolc A, Zhao HH, Arango J et al (2015) Response and inbreeding from a genomic selection experiment in layer chickens. Genet Selec Evolution 47:59. https://doi.org/10.1186/s12711-015-0133-5

    Article  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of heritability for human height. Nat Genet 42(7):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Programm ALT20-03-0246-FEDER-000021, ALT-BiotechRepGen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Carolino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carolino, N., Vicente, A., Carolino, I. (2017). Genetic Improvement of Local Goats. In: Simões, J., Gutiérrez, C. (eds) Sustainable Goat Production in Adverse Environments: Volume I. Springer, Cham. https://doi.org/10.1007/978-3-319-71855-2_8

Download citation

Publish with us

Policies and ethics