Skip to main content

Tropospheric Ozone Budget: Formation, Depletion and Climate Change

  • Chapter
  • First Online:
Tropospheric Ozone and its Impacts on Crop Plants

Abstract

Because tropospheric O3 is a secondary pollutant, its concentration in the troposphere largely depends upon different variables that play major roles in its in-situ production. Formation of O3 in the troposphere largely depends upon the emission of it’s precursors like nitrogen oxides (NOx) and volatile organic compounds (VOCs) along with a set of favourable meteorological conditions such as high temperature, intense solar radiations, long sunshine hours, wind speed/direction, etc. In addition, tropospheric O3 concentration also depends upon the stratospheric intrusion which shows significant seasonal and zonal variations. Apart from O3 formation, the O3 budget in the troposphere is also determined by O3 destruction/depletion, which is more prominent in marine boundary layer, characterized by the production of halogen species like chlorine (Cl), bromine (Br) and iodine (I) and their respective oxides. This chapter emphasizes the role of different factors determining O3 formation/depletion and the conditions which significantly affect the tropospheric O3 budget. The effect of climate change variables on tropospheric O3 budget is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbatt JPD, Lee AKY, Thornton JA (2012) Quantifyingtrace gas uptake to tropospheric aerosol: recent advances and remaining challenges. Chem Soc Rev 41:6555–6581

    Article  CAS  Google Scholar 

  • Alves EG, Peter Harley P, Goncalves JFC, Moura CES, Jardine K (2014) Effects of light and temperature on isoprene emission at different leaf developmental stages of Eschweileracoriacea in central Amazon. Acta Amazon 44(1):9–18

    Article  CAS  Google Scholar 

  • Ambrose JL, Reidmiller DR, Jaffe DA (2011) Causes of high O3 in the lower freetroposphere over the Pacific Northwest as observed at the Mt. Bachelor Observatory. Atmos Environ 45:5302–5315

    Article  CAS  Google Scholar 

  • Andersson C, Engardt M (2010) European ozone in a future climate: importance of changes in dry deposition and isoprene emissions. J Geophys Res Atmos 115:D02303

    Google Scholar 

  • Arneth A, Schurgers G, Lathiere J, Duhl T, Beerling DJ, Hewitt CN, Martin M, Guenther A (2011) Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmos Chem Phys 11:8037–8052

    Article  CAS  Google Scholar 

  • Aumont B, Chervier F, Laval S (2003) Contribution of HONO sources to the NOx/HOx/O3 chemistry in the polluted boundary layer. Atmos Environ 37(4):487–498

    Article  CAS  Google Scholar 

  • Barrie LA, Bottenheim JW, Schnell RC, Crutzen PJ, Rasmussen RA (1988) Ozone destruction and photochemical reactions at polar sunrise in lower arctic atmosphere. Nature 334:138–141

    Article  CAS  Google Scholar 

  • Banerjee A, Archibald AT, Maycock AC, Telford P, Abraham NL, Yang X, Braesicke P, Pyle JA (2014) Lightning NOx, a key chemistry-climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity. Atmos Chem Phys 14:9871–9881

    Article  CAS  Google Scholar 

  • Banerjee A, Maycock AC, Archibald AT, Abraham NL, Paul Telford P, Braesicke P, Pyle JA (2016) Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos Chem Phys 16:2727–2746

    Article  CAS  Google Scholar 

  • Berezina EV, Moiseenko KB, Skorokhod AI, Corresponding Member of the RAS Elansky NF, Belikov IB (2017) Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia. Dokl Akad Nauk 474(3):356–360

    Google Scholar 

  • Bezuglaya EY, Smirnova IV (2008) Cities’ Air and Its Variations (Asterion, St. Petersburg, 2008) [in Russian]

    Google Scholar 

  • Bourqui MS, Trepanier PY (2010) Descent of deep stratospheric intrusions during the IONS August 2006 campaign. J Geophys Res 115:D18–301

    Article  CAS  Google Scholar 

  • Bunzel F, Schmidt H (2013) The Brewer–Dobson circulation in a changing climate: impact of the model configuration. J Atmos Sci 70:1437–1455

    Article  Google Scholar 

  • Butchart N (2014) The Brewer–Dobson circulation. Rev Geophys 52:157–184

    Article  Google Scholar 

  • Carr S, Heard DE, Blitz MA (2009) Comment on Atmospheric Hydroxyl Radical Production from Electronically Excited NO2 and H2O. Science 324(5925):336

    Article  CAS  Google Scholar 

  • Carslaw DC, Beevers SD, Tate JE, Westmoreland EJ, Williams ML (2011) Recent evidence concerning higher NOx emissions from passenger cars and light duty vehicles. Atmos Environ 45:7053–7063

    Article  CAS  Google Scholar 

  • Carpenter LJ, MacDonald SM, Shaw MD, Kumar R, Saunders RW, Parthipan R, Wilson J, Plane JMC (2013) Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nat Geosci 6(2):108–111

    Article  CAS  Google Scholar 

  • Chameides WL, Walker JCG (1973) A photochemical theory fortropospheric ozone. J Geophys Res 78:8751–8760

    Article  CAS  Google Scholar 

  • Chatani S, Amann M, Goel A, Hao J, Klimont Z, Kumar A, Mishra A, Sharma S, Wang SX, Wang YX, Zhao B (2014) Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030. Atmos Chem Phys 14:9259–9277

    Article  CAS  Google Scholar 

  • Chatfield R, Harrison H (1976) Ozone in the remote troposphere –mixing versus photochemistry. J Geophys Res-Ocean Atmos 81:421–423

    Article  CAS  Google Scholar 

  • Chen X, Anel JA, Su Z, de la Torre L, Kelder H, van Peet J, Ma Y (2013) The deep atmospheric boundary layerand its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS One 8:e56909

    Article  CAS  Google Scholar 

  • Cofala J, Amann M, Klimont Z, Kupiainen K, Hoglund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos Environ 41(38):8486–8499. https://doi.org/10.1016/j.atmosenv.2007.07.010

    Article  CAS  Google Scholar 

  • Coates J, Mar KA, Ojha N, Butler TM (2016) The influence of temperature on ozone production under varying NOx conditions – a modelling study. Atmos Chem Phys 16:11601–11615

    Article  CAS  Google Scholar 

  • Collins WJ, Derwent RG, Garnier B, Johnson CE, Sanderson MG, Stevenson DS (2003) Effect of stratosphere troposphere exchange on the future tropospheric ozone trend. J Geophys Res 108:8528. https://doi.org/10.1029/2002JD002617

    Article  CAS  Google Scholar 

  • Cooper OR, Oltmans SJ, Johnson BJ, Brioude J, Angevine W, Trainer M, Parrish DD, Ryerson TR, Pollack I, Cullis PD, Ives MA, Tarasick DW, Al-Saadi J, Stajner I (2011) Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions. J Geophys Res 11:D00V03

    Google Scholar 

  • Crutzen PJ (1973) Photochemical reactions initiated by and influencing ozone in the unpolluted troposphere. Tellus 26:47–57

    Google Scholar 

  • Dalsøren SB, Eide MS, Myhre G, Endresen O, Isaksen ISA, Fuglestvedt AS (2010) Impacts of the Large Increase in International Ship Traffic 2000–2007 on Tropospheric Ozone and Methane. Environ Sci Technol 44:2482–2489

    Google Scholar 

  • Dahlmann K, Grewe V, Ponater M, Matthes S (2011) Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing. Atmos Environ 45(17):2860–2868

    Article  CAS  Google Scholar 

  • Danielsen EF (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J Atmos Sci 25:502–518

    Article  Google Scholar 

  • Demuzere M, Trigo RM, Vila-Guerau de Arellano J, van Lipzig NPM (2009) The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid latitude site. Atmos Chem Phys 9:2695–2714

    Article  CAS  Google Scholar 

  • Derwent R, Simmonds P, Manning A, Spain T (2007) Trends overa 20-year period from 1987 to 2007 in surface ozone at the atmosphericresearch station, Mace Head, Ireland. Atmos Environ 41:9091–9098

    Article  CAS  Google Scholar 

  • Doherty RM et al (2013) Impacts of climate change on surface ozone and intercontinental ozone pollution: a multi-model study. J Geophys Res Atmos 118:3744–3763

    Article  CAS  Google Scholar 

  • Dreyfus GB, Schade GW, Goldstein AH (2002) Observational constraints on the contribution of isoprene oxidation to ozone production on the western slope of the Sierra Nevada, California. J Geophys Res 107(D19):4365. GAW report no. 205, Impacts of megacities on air pollutionand climate (World Meteor. Org., Geneva, 2012)

    Article  CAS  Google Scholar 

  • Ehn M, Thornton JA, Kleist E, Sipilä M, Junninen H, Pullinen I et al (2014) A large source of low-volatility secondary organic aerosol. Nature 506(7489):476–479

    Article  CAS  Google Scholar 

  • Elshorbany Y, Barnes I, Becker KH, Kleffmann J, Wiesen P (2010) Sources and cycling of tropospheric hydroxyl radicals –an overview. Z Phys Chem 224(7–8):967–987

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2007) Air Quality and Emissions – Progress Continues in 2006. http://www.epa.gov/airtrends/econ-emissions.html

  • Escudero M, Lozano A, Hierro J, Valle JD, Mantilla E (2014) Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration. Atmos Environ 99:322–332

    Article  CAS  Google Scholar 

  • Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen Ø, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Assessment of transport impacts on climate and ozone: shipping. Atmos Environ 44:4735–4771

    Google Scholar 

  • Finney DL, Doherty RM, Wild O, Abraham NL (2016) The impact of lightning on tropospheric ozone chemistry using a new global parametrisation. Atmos Chem Phys Discuss 16:1–28

    Article  Google Scholar 

  • Fiore AM et al (2012) Global air quality and climate. Chem Soc Rev 41(19):6663–6683

    Article  CAS  Google Scholar 

  • Fu Y, Tai APK (2015) Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010. Atmos Chem Phys 15:10093–10106

    Article  CAS  Google Scholar 

  • Garcia RR, Randel WJ (2008) Acceleration of the Brewer– Dobson circulation due to increases in greenhouse gases. J Atmos Sci 65:2731–2739

    Article  Google Scholar 

  • Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental Implications of Hydroxyl Radicals (•OH). Chem Rev 115:13051–13092

    Article  CAS  Google Scholar 

  • Goessling HF, Bathiany S (2016) Why CO2 cools the middle atmosphere-a consolidating model perspective. Earth System Dyn 7:697–715

    Article  Google Scholar 

  • Guenther A, Hewitt C, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay W, Pierce T, Scholes R, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, andWang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    Article  CAS  Google Scholar 

  • Haagen-Smit AJ (1952) Chemistry and physiology of Los Angeles smog. Ind Eng Chem 44:1342

    Article  CAS  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander L, Brönnimann S, Charabi Y, Dentener F, Dlugokencky E, Easterling D, Kaplan A, Soden B, Thorne P, Wild M, Zhai PM (2013) Observations: Atmosphere and surface supplementary material. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, US

    Google Scholar 

  • Hauglustaine DA, Koffi B (2012) Boundary layer ozone pollution caused by future aircraft emissions. Geophys Res Lett 39:L13808

    Article  CAS  Google Scholar 

  • Hegglin M, Shepherd T (2009) Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat Geosci 2:687–691

    Article  CAS  Google Scholar 

  • Helmig D, Boylan P, Johnson B, Oltmans S, Fairall C et al (2012) Ozone dynamics and snow- atmosphere exchanges during ozone depletion events at Barrow, Alaska. J Geophys Res Atmos 117(D20). ISSN 01480227. https://doi.org/10.1029/2012JD017531

  • Hess PG, Zbinden R (2013) Stratospheric impact on tropospheric ozone variability and trends: 1990–2009. Atmos Chem Phys 13:649–674

    Article  CAS  Google Scholar 

  • Hofmann C, Kerkweg A, Hoor P, Jöcke P (2016) Stratosphere-troposphere exchange in the vicinity of a tropopause fold. Atmos Chem Phys Discuss 2015:949–975

    Google Scholar 

  • Holmes CD, Prather MJ, Sovde OA, Myhre G (2013) Future methane, hydroxyl and their uncertainties: key climate and emission parameters for future predictions. Atmos Chem Phys 13:285–302

    Article  CAS  Google Scholar 

  • Ibrahim AE-DMM (2014) Nox and Sox emissions and climate changes. World Appl Sci J 31(8):1422–1426

    Google Scholar 

  • IPCC (2007) The physical science basis. contribution of working group I. In: Solomon S et al (eds) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 1–996

    Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK\New York, NY

    Google Scholar 

  • Isaksen I, Berntsen T, Dalsøren S, Eleftheratos K, Orsolini Y, Rognerud B, Stordal F, Søvde O, Zerefos C, Holmes C (2014) Atmospheric ozone and methane in a changing climate. Atmosphere 5:518–535

    Article  CAS  Google Scholar 

  • Jacob DJ, Winner DA (2009) Effect of climatechange on air quality. Atmos Environ 43:51–63

    Article  CAS  Google Scholar 

  • Jacobson MZ, Streets DG (2009) Influence of future anthropogenic emissions on climate, natural emissions, and air quality. J Geophys Res-Atmos 114:D08118

    Google Scholar 

  • Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North Sea Synoptic. Climatol Branch Memorandum 62:18. UK Met Office

    Google Scholar 

  • Jiang X, Ku W, Shia R, Li Q, Elkins J, Prinn R, Yung Y (2007) Seasonal cycle of N2O: analysis of data. Global Biogeochem Cycles 21:GB1006

    Article  CAS  Google Scholar 

  • Jöckel P, Kerkweg A, Pozzer A, Sander R, Tost H, Riede H, Baumgaertner A, Gromov S, Kern B (2010) Development cycle 2 of the modular earth submodel system (MESSy2). Geosci Model Dev 3:717–752

    Article  Google Scholar 

  • Johnson CE, Collins WJ, Stevenson DS, Derwent RG (1999) Relative roles of climate and emissions changes on future oxidant concentrations. J Geophys Res 104(D15):18631–18645

    Article  CAS  Google Scholar 

  • Karpechko AY, Manzini E (2012) Stratospheric influence ontropospheric climate change in the Northern Hemisphere. J Geophys Res 117:D05133

    Article  Google Scholar 

  • Kawase H, Nagashima T, Sudo K, Nozawa T (2011) Future changes in tropospheric ozone under representative concentration pathways (RCPs). Geophys Res Lett 38:L05801

    Article  Google Scholar 

  • Kerkweg A, Jöckel P (2012) The 1-way on-line coupled atmospheric chemistry model system MECO(n) - Part 1: Description of the limited area atmospheric chemistry model COSMO/MESSy. Geosci Model Dev 5:87–110

    Article  CAS  Google Scholar 

  • Kim S, VandenBoer TC, Young CJ, Riedel TP, Thornton JA, Swarthout B, Sive B, Lerner B, Gilman JB, Warneke C, Roberts JM, Guenther A, Wagner NL, Dubé WP, Williams E, Brown SS (2014) The primary and recycling sources of OH during the NACHTT-2011 campaign: HONO as an important OH primary source in the wintertime. J Geophys Res-Atmos 119:JD019784

    Google Scholar 

  • Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A (2005) Day time formation of nitrous acid: a major source of OH radicals in a forest. Geophys Res Lett 32(5):L05818

    Article  CAS  Google Scholar 

  • Knowlton K, Rosenthal JE, Hogrefe C, Lynn B, Gaffin S, Goldberg R, Rosenzweig C, Civerolo K, Ku JY, Kinney PL (2004) Assessingozone-related health impacts under a changing climate. Environ Health Perspect 112(15):1557–1563

    Article  CAS  Google Scholar 

  • Koo J-H, Wang Y, Kurosu TP, Chance K, Rozanoy A, Richter A, Oltmans SJ, Thompson AM, Hair JW, Fenn MA, Weinheimer AJ, Ryerson TB, Solberg S, Huey LG, Liao J, Dibb JE, Neuman JA, Nowak JB, Pierce RB, Natarajan M, Al-Saadi J (2012) Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. Atmos Chem Phys 12:9909–9922

    Article  CAS  Google Scholar 

  • Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens- Maenhout G, Fukui T, Kawashima K, Akimoto H (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional emission inventory in Asia (REAS) version 2. Atmos Chem Phys 13:11019–11058

    Article  CAS  Google Scholar 

  • Lamarque J-F, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Globaland regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Clim Chang 109:191–212

    Article  CAS  Google Scholar 

  • Langford AO, Brioude J, Cooper OR, Senff CJ, Alvarez RJ II, Hardesty RM, Johnson BJ, Oltmans SJ (2012) Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010. J Geophys Res 117:D00V06

    Article  CAS  Google Scholar 

  • Lefohn AS, Wernli H, Shadwick D, Limbach S, Oltmans SJ, Shapiro M (2011) The importance of stratospheric-tropospheric transport in affecting surface ozone concentrations in the western and northern tier of the United States. Atmos Environ 45:4845–4857. https://doi.org/10.1016/j.atmosenv.2011.06.014

    Article  CAS  Google Scholar 

  • Lefohn AS, Wernli H, Shadwick D, Oltmans SJ, Shapiro M (2012) Quantifying the importance of stratospheric-tropospheric transport on surfaceozone concentrations at high- and low-elevation monitoring sites in the United States. Atmos Environ 62:646–656

    Article  CAS  Google Scholar 

  • Leighton PA (1961) Photochemistry of air pollution. Academic Press, New York

    Google Scholar 

  • Lin J-T et al (2008) Effects of intercontinental transport on surface ozone over the United States: present and future assessment with a global model. Geophys Res Lett 35:L02805

    Google Scholar 

  • Lin MY, Fiore AM, Cooper OR, Horowitz LW, Langford AO, Levy H II, Johnson BJ, Naik V, Oltmans SJ, Senff CJ (2012) Springtime high surface ozone events over the western United States: quantifying the roleof stratospheric intrusions. J Geophys Res 117:D00V22

    Article  Google Scholar 

  • Lindwall F, Faubert P, Rinnan R (2015) Diel variationof biogenic volatile Organic compound emissions- a field study in the sub, low and high arctic on the effect of temperature and light. PLoS One 10(4):e0123610

    Article  CAS  Google Scholar 

  • Logan JA, Prather MJ, Wofsy SC, McElroy MB (1981) Tropospheric chemistry: a global perspective. J Geophys Res 86:7210

    Article  CAS  Google Scholar 

  • Logan JA, Staehelin J, Megretskaia IA, Cammas JP, Thouret V, Claude H, De Backer H, Steinbacher M, Scheel HE, Stubi R, Frohlich M, Derwent R (2012) Changes in ozone over Europe: analysis of ozone measurements from sondes, regularaircraft (MOZAIC) and alpine surface sites. J GeophysRes-Atmos 117:D09301

    Google Scholar 

  • Long MS, Keene WC, Easter RC, Sander R, Liu X, Kerkweg A, Erickson D (2014) Sensitivity of tropospheric chemicalcomposition to halogen-radical chemistry using a fully coupledsize-resolved multiphase chemistry–global climate system:halogen distributions, aerosol composition, and sensitivity ofclimate-relevant gases. Atmos Chem Phys 14:3397–3425

    Article  CAS  Google Scholar 

  • Loothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compound in earth system. New Phytol 183(1):27–51

    Article  CAS  Google Scholar 

  • Ma JZ, Yang LX, Shen XL, Qin JH, Deng LL, Ahmed S, Xu HX, Xue DY, Ye JX, Xu G (2014) Effects of traditional Chinese medicinal plants on antiinsulin resistance bioactivity of DXMS-induced insulin resistant HepG2 cells. Nat Prod Bioprospect 4:197–206

    Article  Google Scholar 

  • Mahajan AS, Gómez Martín JC, Hay TD, Royer S-J, Yvon-Lewis S, Liu Y, Hu L, Prados-Roman C, Ordóñez C, Plane JMC, Saiz-Lopez A (2012) Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources. Atmos Chem Phys 12:11609–11617. https://doi.org/10.5194/acp-12-11609-2012

    Article  CAS  Google Scholar 

  • McKinney KA, Lee BH, Vasta A, Pho TV, Munger JW (2011) Emissions of isoprenoids and oxygenated biogenicvolatile organic compounds from a New England mixed forest. Atmos Chem Phys 11(10):4807–4831

    Article  CAS  Google Scholar 

  • Monks PS (2005) Gas-phase radical chemistry in the troposphere. Chem Soc Rev 34:376–395

    Article  CAS  Google Scholar 

  • Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS, Tarasova O, Thouret V, von Schneidemesser E, Sommariva R, Wild O, Williams ML (2015) Troposphericozone and its precursors from the urban to the global scale fromair quality to short-lived climate forcer. Atmos Chem Phys 15:8889–8973

    Article  CAS  Google Scholar 

  • Moore G, Semple JL (2005) A Tibetan Taylor cap and a halo of stratospheric ozone over the Himalaya. Geophys Res Lett 32:L21810

    Article  CAS  Google Scholar 

  • Murray LT, Mickley LJ, Kaplan JO, Sofen ED, Pfeiffer M, Alexander B (2014) Factors controlling variability in the oxidative capacity of the troposphere since the last Glacial maximum. Atmos Chem Phys 14:3589–3622

    Article  CAS  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher HM, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith SJ, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on Emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change., Other Information: PBD: 03 Octo 2000. Cambridge University Press, New York

    Google Scholar 

  • Neu JL, Flury T, Manney GL, Santee ML, Livesey NJ, Worden J (2014) Tropospheric ozone variations governed by changes in stratospheric circulation. Nat Geosci 7:340–344

    Article  CAS  Google Scholar 

  • Olsen MA, Douglass AR, Kaplan TB (2013) Variability of extra tropical ozone stratosphere-troposphere exchange using microwave limb sounder observations. J Geophys Res-Atmos 118:1090–1099

    Article  CAS  Google Scholar 

  • Oltmans SJ, Lefohn AS, Shadwick D, Harris JM, Scheel HE, Galbally I, Tarasick DW, Johnson BJ, Brunke EG, Claude H, Zeng G, Nichol S, Schmidlin F, Davies J, Cuevas E, Redondas A, Naoe H, Nakano T, Kawasato T (2013) Recent tropospheric ozone changes – a pattern dominated by slow or no growth. Atmos Environ 67:331–351

    Article  CAS  Google Scholar 

  • Oman LD, WaughDW KSR, Stolarski RS, Douglass AR, Newman PA (2010) Mechanisms and feedback causing changes in upper stratospheric ozone in the 21st century. J Geophys Res 115:D05303

    Article  CAS  Google Scholar 

  • Ordoñez C, Brunner D, Staehelin J, Hadjinicolaou P, Pyle JA, Jonas M, Wernli H, Prevot ASH (2007) Strong influence of lowermost stratospheric ozone on lower tropospheric background ozone changes over Europe. Geophys Res Lett 34:L07805

    Article  Google Scholar 

  • Ordóñez C, Lamarque J-F, Tilmes S, Kinnison DE, Atlas EL, Blake DR, Sousa Santos G, Brasseur G, Saiz-Lopez A (2012) Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources. Atmos Chem Phys 12:1423−1447

    Article  CAS  Google Scholar 

  • Ormeno E, Gentner DR, Fares S, Karlik J, Park JH, Goldstein AH (2010) Environ Sci Technol 44:3758−3764

    Article  CAS  Google Scholar 

  • Otero N, Sillmann J, Schnell JL, Rust HW, Butler T (2016) Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ Res Lett 11:024005

    Article  CAS  Google Scholar 

  • Pacifico E, Folberth GA, Jones CD, Harrison SP, Collins WJ (2012) Sensitivity of biogenic isoprene emissions to past, present and future environmental conditions and implications for atmospheric chemistry. J Geophys Res 117:D22302

    Article  CAS  Google Scholar 

  • Parrella JP, Jacob DJ, Liang Q, Zhang Y, Mickley LJ, Miller B, Evans MJ, Yang X, Pyle JA, Theys N, Van Roozendael M (2012) Tropospheric bromine chemistry: implications forpresent and pre-industrial ozone and mercury. Atmos Chem Phys 12:6723–6740

    Article  CAS  Google Scholar 

  • Parrish DD, Law KS, Staehelin J, Derwent R, Cooper OR, Tanimoto H, Volz-Thomas A, Gilge S, Scheel H-E, Steinbacher M, Chan E (2012) Long-term changes in lower troposphericbaseline ozone concentrations at northern mid-latitudes. Atmos Chem Phys 12:11485–11504

    Article  CAS  Google Scholar 

  • Penuelas J, Filella I (2001) Phenology: responses to a warming world. Science 294:793–795

    Article  CAS  Google Scholar 

  • Penuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15(3):133–144

    Article  CAS  Google Scholar 

  • Peñuelas J, Staudt M (2010) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223

    Article  CAS  Google Scholar 

  • Portmann R, Daniel J, Ravishankara A (2012) Stratospheric ozone depletion due to nitrous oxide: influences of other gases. Philos Trans R Soc B 367:1256–1264

    Article  CAS  Google Scholar 

  • Pruchniewicz PG (1977) Meridional distribution of ozonein the troposphere and its seasonal variations. J Geophys Res 82:2063–2073

    Article  Google Scholar 

  • Prados-Roman C, Cuevas CA, Hay T, Fernandez RP, Mahajan AS, Royer S-J, Galí M, Simó R, Dachs J, Großmann K, Kinnison DE, Lamarque J-F, Saiz-Lopez A (2015) Iodine oxide in the global marine boundary layer. Atmos Chem Phys 15:583–593. https://doi.org/10.5194/acp-15-583-2015

    Article  CAS  Google Scholar 

  • Pusede SE, Gentner DR, Wooldridge PJ, Browne EC, Rollins AW, Min K-E, Russell AR, Thomas J, Zhang L, Brune WH, Henry SB, DiGangi JP, Keutsch FN, Harrold SA, Thornton JA, Beaver MR, St. Clair JM, Wennberg PO, Sanders J, Ren X, VandenBoer TC, Markovic MZ, Guha A, Weber R, Goldstein AH, Cohen RC (2014) On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California Atmos. Chem Phys 14:3373–143395

    Google Scholar 

  • Pusede SE, Steiner AL, Cohen RC (2015) Temperature and recent trends in the chemistry of Continental surface ozone. Chem Rev 115:3898−3918

    Article  CAS  Google Scholar 

  • Read KA, Majajan AS, Carpenter LJ, Evans MJ, Faria BVE, Heard DE, Hopkins JR, Lee JD, Moller SJ, Lewis AC, Mendes L, McQuaid JB, Oetjen H, Saiz-Lopez A, Pilling MJ, Plane JMC (2008) Extensive halogen mediated ozone destruction over the tropical Atlantic Ocean. Nature 453:1232–1235

    Article  CAS  Google Scholar 

  • Resser DI, Donaldson DJ (2011) Influence of water surface properties on the heterogeneous reaction between O3(g) and I(aq)−. Atmos Environ 45:6116−6120

    Google Scholar 

  • Reed C, Evans MJ, Crilley LR, Bloss WJ, Sherwen T, Read KA, Lee JD, Carpenter LJ (2017) Evidence for renoxification in the tropical marine boundary layer. Atmos Chem Phys 17:4081–4092

    Article  CAS  Google Scholar 

  • Reutter P, Å kerlak B, Sprenger M, Wernli H (2015) Stratosphere–troposphere exchange (STE) in the vicinity of North Atlantic cyclones, Atmos. Chem Phys 15(10):939–10 953

    Google Scholar 

  • Revell L, Bodeker G, Huck P, Williamson B, Rozanov E (2012a) The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4 Atmos. Chem Phys 12:309–311

    Google Scholar 

  • Revell L, Bodeker G, Smale D, Lehmann R, Huck P, Williamson B, Rozanov E, Struthers H (2012b) The effectiveness of N2O in depleting stratospheric ozone. Geophys Res Lett 39:1–6

    Article  CAS  Google Scholar 

  • Revell LE, Tummon F, Stenke A, Sukhodolov T, Coulon A, Rozanov E, Garny H, Grewe V, andPeter T (2015) Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0. Atmos Chem Phys 15:5887–5902

    Article  CAS  Google Scholar 

  • Rohrer F, Berresheim H (2006) Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442(7099):184−187

    Article  CAS  Google Scholar 

  • Royal Society (2008) Ground-level ozone in the 21st century: futuretrends, impacts and policy implications. The Royal Society, London

    Google Scholar 

  • Saavedra S, Rodríguez A, Taboada JJ, Souto J, AandCasares JJ (2012) Synoptic patterns and air mass transport during ozoneepisodes in northwestern Iberia. ScienceTotal Environ 441:97–110

    CAS  Google Scholar 

  • Saiz-Lopez A, von Glasow R (2012) Reactive halogen chemistryin the troposphere. Chem Soc Rev 41:6448–6472

    Article  CAS  Google Scholar 

  • Saiz-Lopez A, Lamarque J-F, Kinnison DE, Tilmes S, Ordóñez C, Orlando JJ, Conley AJ, Plane JMC, Mahajan AS, Sousa Santos G, Atlas EL, Blake DR, Sander SP, Schauffler S, Thompson AM, Brasseur G (2012) Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos Chem Phys 12:3939–3949

    Article  CAS  Google Scholar 

  • Saiz-Lopez A, Fernandez RP, Ordóñez C, Kinnison DE, Gómez Martín JC, Lamarque J-F, Tilmes S (2014) Iodine chemistry in the troposphere and its effect on ozone. Atmos Chem Phys 14:13119–13143. https://doi.org/10.5194/acp-14-13119-2014

    Article  CAS  Google Scholar 

  • Sarwar G, Gantt B, Schwede D, Foley K, Mathur, RandSaiz-Lopez A (2015) Impact of Enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere. Environ Sci Technol 49:9203−9211

    Article  CAS  Google Scholar 

  • Schmidt JA, Jacob DJ, Horowitz HM, Hu L, Sherwen T, Evans MJ, Liang Q, Suleiman RM, Oram DE, Le Breton M, Percival CJ, Wang S, Dix B, Volkamer R (2016) Modeling the observed tropospheric BrO background: importance of multiphase chemistry and implications for ozone, OH, and mercury. GeophysRes Atmos 121:11819–11835

    Article  CAS  Google Scholar 

  • Schollert M, Burchard S, Faubert P, Michelsen A, Rinnan R (2014) Biogenic volatile organic compound emissionsin four vegetation types in high arctic Greenland. Polar Biol 37(2):237–249

    Article  Google Scholar 

  • Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides source. Atmos Chem Phys 7:3823–3907

    Article  CAS  Google Scholar 

  • Schuur EAG, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and permafrost carbon feedback. Nature 520:171–179

    Article  CAS  Google Scholar 

  • Shakhova NE, Sergienko VI, Semiletov IP (2009) The contribution of the East Siberian shelf to the modern methane cycle. Her Russ Acad Sci 79:217–246

    Article  Google Scholar 

  • Shakhova NE, Alekseev VA, Semiletov IP (2010) Predicted methane emission on the east Siberian shelf. Dokl Earth Sci 430:190–193

    Article  CAS  Google Scholar 

  • Sherwen T, Schmidt JA, Evans MJ, Carpenter LJ, Großmann K, Eastham SD, Jacob DJ, Dix B, Koenig TK, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados- Roman C, Mahajan AS, Ordóñez C (2016) Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmos Chem Phys 16:12239–12271

    Article  CAS  Google Scholar 

  • Sherwen T, Evans MJ, Carpenter LJ, Schmidt JA, andMickley LJ (2017) halogen chemistry reduces tropospheric O3 radiative forcing. Atmos Chem Phys 17:1557–1569

    Article  CAS  Google Scholar 

  • Shindell D, Faluvegi G, Lacis A, Hansen J, Ruedy R, Aguilar E (2006) Role of tropospheric ozone increases in 20th centuryclimate change. J Geophys Res-Atmos 111:L04803

    Google Scholar 

  • Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

    Article  CAS  Google Scholar 

  • Simpson WR, Brown SS, Saiz-Lopez A, Thornton JA, von Glasow R (2015) Tropospheric halogen chemistry: sources, cycling, and impacts. Chem Rev 115:4035–4062

    Article  CAS  Google Scholar 

  • Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S, Stavrakou T, Müller J-F, Kuhn U, Stefani P, Knorr W (2014) Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos Chem Phys 14:9317–9341

    Article  CAS  Google Scholar 

  • Å kerlak B, Sprenger M, Wernli H (2014) A global climatology of stratosphere–troposphere exchange using the ERA- Interim data set from 1979 to 2011. Atmos Chem Phys 14:913–937. https://doi.org/10.5194/acp-14-913-2014

    Article  CAS  Google Scholar 

  • Solberg S, Hov Ø, Søvde A, Isaksen ISA, Coddeville P, de Backer H, Forster C, Orsolini Y, Uhse K (2008) European surface ozone in the extreme summer 2003. J Geophys Res Atmos 113:D07307

    Article  CAS  Google Scholar 

  • Sörgel M, Regelin E, Bozem H, Diesch J-M, Drewnick F, Fischer H, Harder H, Held A, Hosaynali-Beygi Z, Martinez M et al (2011) Quantification of the unknown HONO daytime source and its relation to NO2. Atmos Chem Phys 11(20):10433–10447

    Article  CAS  Google Scholar 

  • SPARC-CCMVal, SPARC Report on the Evaluation of Chemistry-Climate Models (2010) In: Eyring V, Shepherd TG, Waugh DW (eds) SPARC Report No. 5, WCRP-132, WMO/TDNo.1526. http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5. Last access: Oct. 2012

    Google Scholar 

  • Steiner AL, Tonse S, Cohen RC, Goldstein AH, Harley RA (2006) Influence of future climate and emissions on regionalair quality in California. J Geophys Res-Atmos 111:d18303

    Article  CAS  Google Scholar 

  • Stevenson DS, Dentener FJ, Schultz MG, Ellingsen K, van Noije TPC, Wild O, Zeng G, Amann M, Atherton CS, Bell N, Bergmann DJ, Bey I, Butler T, Cofala J, Collins WJ, Derwent RG, Doherty RM, Drevet J, Eskes HJ, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque JF, Lawrence MG, Montanaro V, Muller JF, Pitari G, Prather MJ, Pyle JA, Rast S, Rodriguez JM, Sanderson MG, Savage NH, Shindell DT, Strahan SE, Sudo K, Szopa S (2006) Multimodel ensemble simulations of present-day andnear-future tropospheric ozone. J Geophys Res-Atmos 111:D08301

    Article  CAS  Google Scholar 

  • Stolarski RS, Douglass AR, Oman LD, Waugh DW (2015) Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer. Environ Res Lett 10:034011

    Article  CAS  Google Scholar 

  • Stone D, Whalley LK, Heard DE (2012) Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chem Soc Rev 41:6348–6404

    Article  CAS  Google Scholar 

  • Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Hubberten HW (2013) The deep permafrost carbon pool of the yedoma region in Siberia and Alaska. Geophys Res Lett 40(23):6165–6170

    Article  CAS  Google Scholar 

  • Tagaris E, Manomaiphiboon K, Liao K-J, Leung LR, Woo J-H, He S, Amar P, Russell AG (2007) Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. J Geophys Res-Atmos 112:D14312

    Article  CAS  Google Scholar 

  • Tai APK, Mickley LJ, Heald CL, Wu SL (2013) Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use. Geophys Res Lett 40:3479–3483. https://doi.org/10.1002/Grl.50650

    Article  CAS  Google Scholar 

  • Taipale R, Kajos MK, Patokoski J, Rantala P, Ruuskanen TM, Rinne J (2011) Role of de novo biosynthesis inecosystem scale monoterpene emissions from a boreal Scots pine forest. Biogeosciences 8(8):2247–2255

    Article  CAS  Google Scholar 

  • Tang Q, Hess PG, Brown-Steiner B, Kinnison DE (2013) Troposphericozone decrease due to the Mount Pinatubo eruption:Reduced stratospheric influx. Geophys Res Lett 40:5553–5558

    Article  CAS  Google Scholar 

  • Tiwari S, Rai R, Agrawal M (2008) Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. Int J Remote Sens 9(15):4499–4514

    Google Scholar 

  • Wang W, Tian W, Dhomse S, Xie F, Shu J, Austin J (2014) Stratospheric ozone depletion from future nitrous oxide increases. Atmos Chem Phys 14:12967–12982

    Article  CAS  Google Scholar 

  • Wang S-Y, Schmidtd J, Baidar S, Coburn S, Dix B, Koenig T, Apel E, Bowdalo D, Campos T, Eloranta E, Evans M, DiGangii J, Zondlo M, Gao R-S, Haggerty J, Hall S, Hornbrook R, Jacob D, Morley B, Pierce B, Reeves M, Romashkin P, terSchure A, Volkamer R (2015) Active and widespread halogen chemistry in the tropical and subtropical free troposphere. P Natl Acad Sci USA 112:9281–9286

    Article  CAS  Google Scholar 

  • Weiss M, Bonnel P, Kühlwein J, Provenza A, Lambrecht U, Alessandrini S, Carriero M, Colombo R, Forni F, Lanappe G, Le Lijour P, Manfredi U, Montigny F, Sculati M (2012) Will Euro 6 reduce the NOx emissions of new diesel cars? – Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmos Environ 62:657–665

    Article  CAS  Google Scholar 

  • West JJ, Smith SJ, Silva RA, Naik V, Zhang Y, Adelman Z, Fry MM, Anenberg S, Horowitz LW, Lamarque J-F (2013) Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat Clim Chang 3:885–889

    Article  CAS  Google Scholar 

  • Wild O (2007) Modelling the global tropospheric ozone budget: exploringthe variability in current models. Atmos Chem Phys 7:2643–2660

    Article  CAS  Google Scholar 

  • Wu SL, Mickley LJ, Jacob DJ, Logan JA, Yantosca RM, Rind D (2007) Why are there large differences between models inglobal budgets of tropospheric ozone? J Geophys Res-Atmos 112:D05302

    Google Scholar 

  • Wu S, Mickley LJ, Leibensperger EM, Jacob DJ, Rind D, Streets DG (2008) Effects of 2000–2050 global change on ozone air quality in the United States. J Geophys Res 113:D06302

    Google Scholar 

  • Wu S, Mickley LJ, Kaplan JO, Jacob DJ (2012) Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos Chem Phys 12:1597–1609

    Article  CAS  Google Scholar 

  • Xie X, Shao M, Liu Y, Lu S, Chang CC, Chen ZM (2008) Atmos Environ 42:6000–6010

    Article  CAS  Google Scholar 

  • Xue LK, Wang T, Zhang JM, Zhang XC, Deliger, Poon CN, Ding AJ, Zhou XH, Wu WS, Tang J, Zhang QZ, Wang WX (2011) Source of surface ozone and reactive nitrogenspeciation at Mount Waliguan in western China: new insights from the 2006 summer study. J Geophys Res 116:D07306

    Google Scholar 

  • Young PJ, Archibald AT, Bowman KW, Lamarque J-F, Naik V, Stevenson DS, Tilmes S, Voulgarakis A, Wild O, Bergmann D, Cameron-Smith P, Cionni I, Collins WJ, Dalsøren SB, Doherty RM, Eyring V, Faluvegi G, Horowitz LW, Josse B, Lee YH, MacKenzie IA, Nagashima T, Plummer DA, Righi M, Rumbold ST, Skeie RB, Shindell DT, Strode SA, Sudo K, Szopa S, Zeng G (2013) Preindustrialto end 21st century projections of tropospheric ozonefrom the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:2063–2090

    Article  CAS  Google Scholar 

  • Zeng G, Pyle JA (2003) Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry-climate model. Geophys Res Lett 30:1392. https://doi.org/10.1029/2002GL016708

    Google Scholar 

  • Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8(2):369–387

    Article  CAS  Google Scholar 

  • Zeng G, Morgenstern O, Braesicke P, Pyle JA (2010) Impact of stratospheric ozone recovery on tropospheric ozone and its budget. Geophys Res Lett 37:L09805

    Google Scholar 

  • Zhao Y, Zhang J, Nielsen CP (2013) The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China. Atmos Chem Phys 13:487–508

    Article  CAS  Google Scholar 

  • Zheng X, Shen C, Wan G, Liu K, Tang J, Xu X (2011) 10Be/7Be implies the contribution of stratosphere –tropospheretransport to the winter-spring surface O3 variation observed on the Tibetan Plateau. Chin Sci Bull 56:84–88

    Article  CAS  Google Scholar 

  • Zhou W, Cohan DS, Henderson BH (2014) Slower ozone production in Houston, Texas following emission reductions: evidence from Texas Air Quality Studies in 2000 and 2006. Atmos Chem Phys 14:2777–2788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Agrawal, M. (2018). Tropospheric Ozone Budget: Formation, Depletion and Climate Change. In: Tropospheric Ozone and its Impacts on Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-71873-6_2

Download citation

Publish with us

Policies and ethics