Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 945))

  • 1110 Accesses

Abstract

We now come to the basic theoretical problem: given QCD as strong interaction dynamics, derive strong interaction thermodynamics. After looking at some essential features of chromodynamics, we develop statistical QCD at finite temperature in the lattice formulation and discuss how it can be evaluated by computer simulation. We then use this method to study the thermodynamics of strongly interacting matter at vanishing baryon number density.

El universo (que otros llaman la biblioteca) – es ilimitado yperiódico. Si un eterno viajero le atravesara en qualquierdirección, comprobaria al cabo de los siglos que los mismosvolúmenes se repiten en el mismo desorden que, repetido, seriaun orden: el Orden. Jorge Luis Borges, La Biblioteca de Babel (The universe (which others call the library) – is unlimited andperiodic. If an eternal voyager were to traverse it in anydirection, he would find, after many centuries, that the samevolumes are repeated in the same disorder which, sincerepeated, would be an order: order itself.) ( Jorge Luis Borges, The Library of Babel)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.T.H. Davies et al., Phys. Rev. Lett. 92, 022001 (2004)

    Article  ADS  Google Scholar 

  2. S. Dürr et al., Science 322, 1224 (2008)

    Article  ADS  Google Scholar 

  3. G. Altarelli, Ann. Rev. Nucl. Part. Sci. 39, 357 (1989)

    Article  ADS  Google Scholar 

  4. K. Wilson, Phys. Rev. D 10, 2445 (1974)

    Article  ADS  Google Scholar 

  5. M. Creutz, Phys. Rev. Lett. 43, 553 (1979)

    Article  ADS  Google Scholar 

  6. M. Creutz, Phys. Rev. D21, 2308 (1980)

    ADS  Google Scholar 

  7. H.J. Rothe, Lattice Gauge Theories. World Scientific Lecture Notes in Physics, vol. 74, 3rd edn. (World Scientific, Singapore, 2005)

    Google Scholar 

  8. I. Montvay, G. Münster, Quantum Fields on a Lattice (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  9. C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lattice (Springer, Berlin/Heidelberg, 2010)

    Book  Google Scholar 

  10. R. Feynman, Phys. Rev. 80, 440 (1950)

    Article  ADS  Google Scholar 

  11. C. Bernard, Phys. Rev. D 9, 3312 (1974)

    Article  ADS  Google Scholar 

  12. F.J. Wegner, J. Math. Phys. 10, 2259 (1971)

    Article  ADS  Google Scholar 

  13. N. Kawamoto, Nucl. Phys. B 190[FS3], 617 (1981)

    Google Scholar 

  14. P.T. Matthews, A. Salam, Nuovo Cim. 12, 563 (1954)

    Article  ADS  Google Scholar 

  15. J. Engels et al., Phys. Lett. B 252, 625 (1990)

    Article  ADS  Google Scholar 

  16. K. Symanzik, Nucl. Phys. B 226, 187 and 205 (1983)

    Google Scholar 

  17. K. Wilson, in New Phenomena in Subatomic Physics, ed. by A. Zichichi (Plenum Press, New York, 1977)

    Google Scholar 

  18. J. Kogut, L. Susskind, Phys. Rev. D11, 395 (1975) and D16, 3031 (1977)

    Google Scholar 

  19. H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 185, 20 (1981)

    Article  ADS  Google Scholar 

  20. D.B. Kaplan, Phys. Lett. B 268 342 (1992)

    Article  ADS  Google Scholar 

  21. H. Neuberger, Phys. Lett. B 417, 141 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. H. Neuberger, Phys. Rev. D 87, 5417 (1998)

    Article  ADS  Google Scholar 

  23. F. Karsch, Nucl. Phys. B 205[FS5], 285 (1982)

    Google Scholar 

  24. N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  25. P. Hasenfratz, F. Karsch, Phys. Lett. B 125, 308 (1983)

    Article  ADS  Google Scholar 

  26. R.V. Gavai, Phys. Rev. D 32, 519 (1985)

    Article  ADS  Google Scholar 

  27. Z. Fodor, S.D. Katz, JHEP 0203, 014 (2002)

    Article  ADS  Google Scholar 

  28. Ph. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002)

    Article  ADS  Google Scholar 

  29. M.-P. Lombardo, Phys. Rev. D 67, 014505 (2003)

    ADS  Google Scholar 

  30. C.R. Allton et al., Phys. Rev. D 68, 014507 (2003)

    Article  ADS  Google Scholar 

  31. J. Engels, F. Karsch, I. Montvay, H. Satz, Phys. Lett. B 101, 89 (1981)

    Article  ADS  Google Scholar 

  32. J. Engels, F. Karsch, I. Montvay, H. Satz, Nucl. Phys. B 205, 545 (1982)

    Article  ADS  Google Scholar 

  33. G. Boyd et al., Phys. Rev. Lett. 75, 4169 (1995)

    Article  ADS  Google Scholar 

  34. G. Boyd et al., Nucl. Phys. B 469, 419 (1996)

    Article  ADS  Google Scholar 

  35. T. Çelik et al., Phys. Lett. B 125, 411 (1983)

    Article  ADS  Google Scholar 

  36. J. Kogut et al., Phys. Rev. Lett. 51, 869 (1983)

    Article  ADS  Google Scholar 

  37. Sz. Borsanyi et al., arXiv:1104.0013 [hep-ph]

    Google Scholar 

  38. L.D. McLerran, B. Svetitsky, Phys. Lett. B 98, 195 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  39. L.D. McLerran, B. Svetitsky, Phys. Rev. D 24, 450 (1981)

    Article  ADS  Google Scholar 

  40. J. Kuti, J. Polónyi, K. Szlachányi, Phys. Lett. B 98, 199 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Eichten et al., Phys. Rev. D 17, 3090 (1978) and 21, 203 (1980)

    Google Scholar 

  42. M. Lüscher, G. Münster, P. Weisz, Nucl. Phys. B 180, 1 (1981)

    Article  ADS  Google Scholar 

  43. O. Kaczmarek et al., Phys. Lett. B 543, 41 (2002)

    Article  ADS  Google Scholar 

  44. M. Teper, hep-th/9812187

    Google Scholar 

  45. A. Bazavov et al. (HotQCD), Phys. Rev. D 90, 094503 (2014)

    Google Scholar 

  46. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009)

    Article  ADS  Google Scholar 

  47. M. Cheng et al., Phys. Rev. D 81, 054504 (2010)

    Article  ADS  Google Scholar 

  48. M. Wingate et al., Phys. Rev. Lett. 92, 162001 (2004)

    Article  ADS  Google Scholar 

  49. A. Gray et al., Phys. Rev. D 72, 094507 (2005)

    Article  ADS  Google Scholar 

  50. C. Aubin et al., Phys. Rev. D 70, 094505 (2004)

    Article  ADS  Google Scholar 

  51. M. Cheng et al., Phys. Rev. D 77, 014511 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satz, H. (2018). Statistical QCD. In: Extreme States of Matter in Strong Interaction Physics. Lecture Notes in Physics, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-319-71894-1_5

Download citation

Publish with us

Policies and ethics