Skip to main content

The Global Atmosphere Oscillations in the Context of the Recent Climate Change

  • Chapter
  • First Online:
The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 1489 Accesses

Abstract

This study is dedicated to the confirmation, improvement, and extending of the preliminary hypothesis on short-term oscillations of the recent climate thermodynamic characteristics. In some previous studies we distinguished the quasi-cyclic oscillations in the recent climate dynamics with periods of 3–4 years and 25–35 years. These fluctuations appear in the most explicit form in the terms of large-scale redistribution of the atmospheric air mass accompanied by a significant enhancement of the positive atmospheric pressure anomaly in the equatorial-tropical zone and formation of the other major anomalies in different regions of the Earth. The results indicate that the known multimode regional indices in the dynamics of the climate system: the North Atlantic, North Pacific, Southern, and the others so-called Oscillations (NAO, NPO etc.) can be derived from the global atmospheric oscillations (GAO) with the temporal scales from several years to decades. It was found that multi-decade GAO is distinguished on the basis of a consequent phase change of the climate scenario in the North Atlantic region. Consideration of the interannual GAO led us to the definition of a new concept of the El Niño’s physical trigger mechanism in the Pacific region. Moreover, on the basis of the empirical data, it was shown for the first time that the well-known climatic events within the El Niño—Southern Oscillation (ENSO) phenomenon should be considered as a structural part of the interannual GAO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gribbin, D. (1980). Climate change (p. 360). Leningrad: Gidrometeoizdat.

    Google Scholar 

  2. Huybers, P., & Curry, W. (2006). Links between annual, Milankovitch, and continuum temperature variability. Nature, 441, 329–332.

    Article  Google Scholar 

  3. Kondrat’ev, K. J. (1992). Global climate (p. 359). Saint-Petersburg: Nauka.

    Google Scholar 

  4. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., et al. (Eds.). (2013). Climate change 2013; IPCC, The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge: Cambridge University Press.

    Google Scholar 

  5. Bronnimann, S., Stickler, A., Griesser, T., Fisher, A. M., Grant, A., Ewen, T., et al. (2009). Variability of large-scale atmospheric circulation indices for the Northern Hemisphere during the past 100 years. Meteorologische Zeitschrift, 18(4), 379–396.

    Article  Google Scholar 

  6. Allan, R. J., & Ansell, T. J. (2006). A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004. Journal of Climate, 19, 5816–5846.

    Article  Google Scholar 

  7. Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., & Morice, C. P. (2012). Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research, 117, D05127. https://doi.org/10.1029/2011JD017139.

    Google Scholar 

  8. Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2012). On El Niño as a consequence of the global oscillation in the dynamics of the Earth’s climatic system. Doklady Earth Sciences, 446(1), 1089–1094.

    Article  Google Scholar 

  9. Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata, T., et al. (1998). ENSO theory. Journal of Geophysical Research, 103(C7), 14261–14290.

    Article  Google Scholar 

  10. Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2009). On the spatial nonuniformity of some parameters of the modern climate. Doklady Earth Sciences, 426(1), 705–709.

    Article  Google Scholar 

  11. Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2011). Phase variability of some characteristics of the present-day climate in the northern Atlantic region. Doklady Earth Sciences, 438(2), 887–892.

    Article  Google Scholar 

  12. Kozlenko, S. S., Mokhov, I. I., & Smirnov, D. A. (2009). Analysis of the cause and effect relationships between El Niño in the Pacific and its analog in the equatorial Atlantic. Izvestiya, Atmospheric and Oceanic Physics, 45(6), 704–713.

    Article  Google Scholar 

  13. Steinman, B. A., Mann, M. E., & Miller, S. K. (2015). Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347(6225), 988–991.

    Article  Google Scholar 

  14. Wyatt, M. G., Kravtsov, S., & Tsonis, A. A. (2012). Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Climate Dynamics, 38, 929–949. https://doi.org/10.1007/s00382-011-1071-8.

    Article  Google Scholar 

  15. Zhang, L., Wang, C., & Wu, L. (2012). Low-frequency modulation of the Atlantic warm pool by the Atlantic multidecadal oscillation. Climate Dynamics, 39, 1661–1671. https://doi.org/10.1007/s00382-011-1257-0.

    Article  Google Scholar 

  16. Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2011). On global scale of El Niño events within the Earth climatic system. Recent problems of the Earth observation from space. 8(4), 200–208 (in Russian).

    Google Scholar 

  17. Anisimov, M. V., Byshev, V. I., Zalesny, V. B., Moshonkin, S. N., Neiman, V. G., Romanov, Y. A., et al. (2012). On inter-decadal variability of ocean and atmosphere characteristics in the Northern Atlantic. Recent problems of the Earth observation from space. 9(2), 304–311 (in Russian).

    Google Scholar 

  18. Petrosjants, M. A., Semenov, E. K., & Gushchina, D. J. (2005). Atmospheric circulation in tropics: Climate and its variability (p. 640). Moscow: Maks Press.

    Google Scholar 

  19. Kao, H.-Y., & Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate, 22, 615–632. https://doi.org/10.1175/2008JCLI2309.1.

    Article  Google Scholar 

  20. Sidorenkov, N. S. (2002). Physics of the Earth’s rotation instabilities (p. 384). Moscow: Nauka, Fizmatlit.

    Google Scholar 

  21. Liu, Z., & Alexander, M. (2007). Atmospheric bridge, oceanic tunnel, and global climate teleconnections. Reviews of Geophysics, 45, R62005.

    Article  Google Scholar 

  22. Bronnimann, S. (2007). Impact of El Niño-Southern Oscillation on European climate. Reviews of Geophysics, 45, RG3003. https://doi.org/10.1029/2006RG000199.

  23. Li, S., & Luo, F.-F. (2013). Lead-lag connection of the Atlantic multidecadal oscillation (AMO) with East Asian surface air temperatures instrumental records. Atmospheric and Oceanic Science Letters, 6(3), 138–143.

    Article  Google Scholar 

  24. Varotsos, C. A. (2013). The global signature of the ENSO and SST-like fields. Theoretical and Applied Climatology, 113, 197–204. https://doi.org/10.1007/s00704-012-0773-0.

    Article  Google Scholar 

  25. Liu, P., & Sui, C.-H. (2014). An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability. Advances in Atmospheric Science, 31, 316–330.

    Article  Google Scholar 

  26. Serykh, I. V., & Sonechkin, D. M. (2016). On the influence of the polar tide on El Niño. Recent problems of the Earth observation from Space. 13(2), 44–52 (in Russian).

    Google Scholar 

  27. Byshev, V. I., Neiman, V. G., Romanov, Y. A., Serykh, I. V., & Sonechkin, D. M. (2016). Statistical significance and climatic role of the global atmospheric oscillation. Oceanology, 56(2), 165–171.

    Article  Google Scholar 

  28. de Viron, O., Dickey, J. O., & Ghil, M. (2013). Global modes of climate variability. Geophysical Research Letters, 40, 1832–1837. https://doi.org/10.1002/grl.50386.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, grant 14-50-00095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Neiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neiman, V.G., Byshev, V.I., Romanov, Y.A., Serykh, I.V. (2018). The Global Atmosphere Oscillations in the Context of the Recent Climate Change. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_22

Download citation

Publish with us

Policies and ethics