Skip to main content

Amorphous Drug Preparation Methods

  • Chapter
  • First Online:
Amorphous Drugs

Abstract

Hot-melt extrusion (HME) as continuous melt manufacturing process is preferable and industrially applicable. Single- or twin-screw extrusion and hot-melt co-extrusion are widely adopted techniques in pharmaceutical technology. Conveying of solids, melting, mixing, devolatilization, pumping and pressurization are main stages of HME. In principle, extrusion equipment usually consists of motor as a drive unit, an extrusion barrels enclosing rotating screw(s), an extrusion die and electronic control unit [1]. For better dispersive mixing specialized mixing elements are also used. The barrel can be independently heated and cooled by control system. The design variables concerns extruder, screw and die. The twin-screw extruder has two agitator assemblies mounted on parallel shafts which can rotate together in the same (co-rotating) or opposite directions and can be fully intermeshing. The diameter of screws which determine the size of equipment, and length of screws to diameter ratio (L/D), usually ranging between 20–40:1, are primarily defined. Modification of screw configuration affects the modification of manufacturing method leading to the process optimization for the planned application. Some examples of extruders modification are depicted schematically in Fig. 4.1. Commercial extruders have modular design that makes possible modification of the process under particular requirements [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiry J, Krier F, Evrard B (2015) A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm 479(1):227–240. https://doi.org/10.1016/j.ijpharm.2014.12.036

    Article  CAS  Google Scholar 

  2. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107

    Article  CAS  Google Scholar 

  3. Alshahrani SM, Morott JT, Alshetaili AS, Tiwari RV, Majumdar S, Repka MA (2015) Influence of degassing on hot-melt extrusion process. Eur J Pharm Sci 80:43–52. https://doi.org/10.1016/j.ejps.2015.08.008

    Article  CAS  Google Scholar 

  4. Liu H, Wang P, Zhang X, Shen F, Gogos CG (2010) Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit E PO solid dispersions. Int J Pharm 383(1–2):161–169. https://doi.org/10.1016/j.ijpharm.2009.09.003

    Article  CAS  Google Scholar 

  5. Vynckier AK, Dierickx L, Saerens L et al (2014) Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core. Int J Pharm 464(1–2):65–74. https://doi.org/10.1016/j.ijpharm.2014.01.028

    Article  CAS  Google Scholar 

  6. Vynckier AK, De Beer M, Monteyne T et al (2015) Enteric protection of naproxen in a fixed-dose combination product produced by hot-melt co-extrusion. Int J Pharm 491(1–2):243–249. https://doi.org/10.1016/j.ijpharm.2015.06.010

    Article  CAS  Google Scholar 

  7. Fule R, Dhamecha D, Maniruzzaman M, Khale A, Amin P (2015) Development of hot melt co-formulated antimalarial solid dispersion system in fixed dose form (ARLUMELT): evaluating amorphous state and in vivo performance. Int J Pharm 496(1):137–156. https://doi.org/10.1016/j.ijpharm.2015.09.069

    Article  CAS  Google Scholar 

  8. Maniruzzaman M, Morgan DJ, Mendham AP, Pang J, Snowden MJ, Douroumis D (2013) Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm 443(1–2):199–208. https://doi.org/10.1016/j.ijpharm.2012.11.048

    Article  CAS  Google Scholar 

  9. Grymonpre W, Verstraete G, Van Bockstal PJ et al (2017) In-line monitoring of compaction properties on a rotary tablet press during tablet manufacturing of hot-melt extruded amorphous solid dispersions. Int J Pharm 517(1-2):348–358. https://doi.org/10.1016/j.ijpharm.2016.12.033

    Article  CAS  Google Scholar 

  10. Liu J, Cao F, Zhang C, Ping Q (2013) Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharm Sin B 3(4):263–272. https://doi.org/10.1016/j.apsb.2013.06.007

    Article  Google Scholar 

  11. Mahmah O, Tabbakh R, Kelly A, Paradkar A (2013) A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine. J Pharm Pharmacol 66(2):275–284. https://doi.org/10.1111/jphp.12099

    Article  CAS  Google Scholar 

  12. Hülsmann S, Backensfeld T, Keitel S, Bodmeier R (2000) Melt extrusion–an alternative method for enhancing the dissolution rate of 17β-estradiol hemihydrate. Eur J Pharm Biopharm 49(3):237–242

    Article  Google Scholar 

  13. Fu Q, Fang M, Hou Y et al (2016) A physically stabilized amorphous solid dispersion of nisoldipine obtained by hot melt extrusion. Powder Technol 301:342–348. https://doi.org/10.1016/j.powtec.2016.06.032

    Article  CAS  Google Scholar 

  14. Thiry J, Lebrun P, Vinassa C et al (2016) Continuous production of itraconazole-based solid dispersions by hot melt extrusion: preformulation, optimization and design space determination. Int J Pharm 515(1–2):114–124. https://doi.org/10.1016/j.ijpharm.2016.10.003

    Article  CAS  Google Scholar 

  15. Park J-B, Lee B-J, Kang C-Y, Tiwari RV, Repka MA (2017) Process analytical quality control of tailored drug release formulation prepared via hot-melt extrusion technology. J Drug Deliv Sci Technol 38:51–58. https://doi.org/10.1016/j.jddst.2017.01.007

    Article  CAS  Google Scholar 

  16. Verreck G, Decorte A, Li H et al (2006) The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers. J Supercrit Fluids 38(3):383–391. https://doi.org/10.1016/j.supflu.2005.11.022

    Article  CAS  Google Scholar 

  17. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A (2017) A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev 108:39–50. https://doi.org/10.1016/j.addr.2016.03.001

    Article  CAS  Google Scholar 

  18. Goyanes A, Chang H, Sedough D et al (2015) Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 496(2):414–420. https://doi.org/10.1016/j.ijpharm.2015.10.039

  19. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N (2016) Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci 90:53–63. https://doi.org/10.1016/j.ejps.2015.11.005

  20. Jonathan G, Karim A (2016) 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm Sci 499:376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071

  21. Zhang J, Feng X, Patil H, Tiwari RV, Repka MA (2016) Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm 519:186–197. https://doi.org/10.1016/j.ijpharm.2016.12.049

    Article  CAS  Google Scholar 

  22. Jamróż W, Kurek M, Ewelina Ł et al (2017) 3D printed orodispersible films with aripiprazole. Int J Pharm 533:413–420. https://doi.org/10.1016/j.ijpharm.2017.05.052

  23. Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW (2016) Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm 514:290–295. https://doi.org/10.1016/j.ijpharm.2016.06.021

    Article  CAS  Google Scholar 

  24. Chai X, Chai H, Wan X et al (2017) Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep 7(2829):1–9. https://doi.org/10.1038/s41598-017-03097-x

    CAS  Google Scholar 

  25. Kasper JC, Winter G, Friess W (2013) Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm 85(2):162–169. https://doi.org/10.1016/j.ejpb.2013.05.019

    Article  CAS  Google Scholar 

  26. Franks F (1998) Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm 45(3):221–229. https://doi.org/10.1016/S0939-6411(98)00004-6

    Article  CAS  Google Scholar 

  27. Tang X, Pikal MJ (2004) Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21(2):191–200. https://doi.org/10.1023/B:PHAM.0000016234.73023.75

    Article  CAS  Google Scholar 

  28. Craig DQM, Royall PG, Kett VL, Hopton ML (1999) The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm 179(2):179–207. https://doi.org/10.1016/S0378-5173(98)00338-X

    Article  CAS  Google Scholar 

  29. Siow CRS, Wan Sia Heng P, Chan LW (2016) Application of freeze-drying in the development of oral drug delivery systems. Expert Opin Drug Deliv 13(11):1595–1608. https://doi.org/10.1080/17425247.2016.1198767

    Article  CAS  Google Scholar 

  30. Liu J (2006) Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development. Pharm Dev Technol 11(1):3–28. https://doi.org/10.1080/10837450500463729

    Article  CAS  Google Scholar 

  31. Sadikoglu H, Ozdemir M, Seker M (2006) Freeze-drying of pharmaceutical products: research and development needs. Dry Technol 24(7):849–861. https://doi.org/10.1080/07373930600734018

    Article  CAS  Google Scholar 

  32. Teagarden DL, Baker DS (2002) Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci 15(2):115–133. https://doi.org/10.1016/S0928-0987(01)00221-4

    Article  CAS  Google Scholar 

  33. Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A (2010) Lyophilization monophase solution technique for improvement of the physicochemical properties of an anticancer drug, flutamide. Eur J Pharm Biopharm 74(2):397–405. https://doi.org/10.1016/j.ejpb.2009.11.011

    Article  CAS  Google Scholar 

  34. Pisano R, Fissore D, Barresi AA, Rastelli M (2013) Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry. AAPS PharmSciTech 14(3):1137–1149. https://doi.org/10.1208/s12249-013-0003-9

    Article  Google Scholar 

  35. Patel BB, Patel JK, Chakraborty S, Shukla D (2015) Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J 23(4):352–365. https://doi.org/10.1016/j.jsps.2013.12.013

    Article  Google Scholar 

  36. Lefebvre AH, McDonell VG (2017) Atomization and sprays, 2nd edn. CRC, Boca Raton, FL

    Book  Google Scholar 

  37. Lee SH, Heng D, Ng WK, Chan HK, Tan RBH (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403(1–2):192–200. https://doi.org/10.1016/j.ijpharm.2010.10.012

    Article  CAS  Google Scholar 

  38. Schmid K, Arpagaus C, Friess W (2011) Evaluation of the nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol 16(4):287–294. https://doi.org/10.3109/10837450.2010.485320

    Article  CAS  Google Scholar 

  39. Singh A, Van den Mooter G (2016) Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev 100:27–50. https://doi.org/10.1016/j.addr.2015.12.010

    Article  CAS  Google Scholar 

  40. Cal K, Sollohub K (2010) Spray drying technique. I: hardware and process parameters. J Pharm Sci 99(2):575–586. https://doi.org/10.1002/jps.21886

    Article  CAS  Google Scholar 

  41. Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G (2013) Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 453(1):253–284. https://doi.org/10.1016/j.ijpharm.2012.07.015

    Article  CAS  Google Scholar 

  42. Cortés C, Gil A (2007) Modeling the gas and particle flow inside cyclone separators. Prog Energy Combust Sci 33(5):409–452. https://doi.org/10.1016/j.pecs.2007.02.001

    Article  CAS  Google Scholar 

  43. Li X, Anton N, Arpagaus C, Belleteix F, Vandamme TF (2010) Nanoparticles by spray drying using innovative new technology: the Büchi Nano Spray Dryer B-90. J Control Release 147(2):304–310. https://doi.org/10.1016/j.jconrel.2010.07.113

    Article  CAS  Google Scholar 

  44. Sosnik A, Seremeta KP (2015) Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci 223:40–54. https://doi.org/10.1016/j.cis.2015.05.003

    Article  CAS  Google Scholar 

  45. Snyder HE (2012) Pharmaceutical spray drying: solid-dose process technology platform for the 21st century. Ther Deliv 3(7):901–912. https://doi.org/10.4155/tde.12.64

    Article  CAS  Google Scholar 

  46. Ambike AA, Mahadik KR, Paradkar A (2005) Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations. Pharm Res 22(6):990–998. https://doi.org/10.1007/s11095-005-4594-z

    Article  CAS  Google Scholar 

  47. Gupta P, Bansal AK (2005) Spray drying for generation of a ternary amorphous system of celecoxib, PVP, and meglumine. Pharm Dev Technol 10(2):273–281. https://doi.org/10.1081/PDT-54460

    Article  CAS  Google Scholar 

  48. Broadhead J, Edmond Rouan S, Rhodes C (1992) The spray drying of pharmaceuticals. Drug Dev Ind Pharm 18(11–12):1169–1206. https://doi.org/10.3109/03639049209046327

    Article  CAS  Google Scholar 

  49. Paudel A, Van Den Mooter G (2012) Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm Res 29(1):251–270. https://doi.org/10.1007/s11095-011-0539-x

    Article  CAS  Google Scholar 

  50. Al-Obaidi H, Brocchini S, Buckton G (2009) Anomalous properties of spray dried solid dispersions. J Pharm Sci 98(12):4724–4737. https://doi.org/10.1002/jps.21782

    Article  CAS  Google Scholar 

  51. Szafraniec J, Antosik A, Knapik-Kowalczuk J et al (2017) Planetary ball milling and supercritical fluid technology as a way to enhance dissolution of bicalutamide. Int J Pharm. 533:470–479. https://doi.org/10.1016/j.ijpharm.2017.03.078

  52. Lim RTY, Kiong W, Tan RBH (2013) Dissolution enhancement of indomethacin via amorphization using co-milling and supercritical co-precipitation processing. Powder Technol 240:79–87. https://doi.org/10.1016/j.powtec.2012.07.004

    Article  CAS  Google Scholar 

  53. Gong K, Viboonkiat R, Rehman IU, Buckton G, Darr JA (2005) Formation and characterization of porous indomethacin-PVP coprecipitates prepared using solvent-free supercritical fluid processing. J Pharm Sci 94(12):2583–2590. https://doi.org/10.1002/jps.20474

    Article  CAS  Google Scholar 

  54. Sethia S, Squillante E (2004) Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm 272:1–10. https://doi.org/10.1016/j.ijpharm.2003.11.025

    Article  CAS  Google Scholar 

  55. Banchero M, Manna L, Ronchetti S, Campanelli P, Ferri A (2009) Supercritical fluids supercritical solvent impregnation of piroxicam on PVP at various polymer molecular weights. J Supercrit Fluids 49:271–278. https://doi.org/10.1016/j.supflu.2009.01.008

    Article  CAS  Google Scholar 

  56. Won DH, Kim MS, Lee S, Park JS, Hwang SJ (2005) Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int J Pharm 301(1-2):199–208. https://doi.org/10.1016/j.ijpharm.2005.05.017

    Article  CAS  Google Scholar 

  57. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67(1–2):21–33. https://doi.org/10.1016/j.jfoodeng.2004.05.060

    Article  Google Scholar 

  58. Deshpande PB, Kumar GA, Kumar AR et al (2011) Supercritical fluid technology: concepts and pharmaceutical applications. PDA J Pharm Sci Technol 65(3):333–344. https://doi.org/10.5731/pdajpst.2011.00717

    Article  CAS  Google Scholar 

  59. Gurikov P, Smirnova I (2018) Amorphization of drugs by adsorptive precipitation from supercritical solutions: a review. J Supercrit Fluids 132:105–125

    Google Scholar 

  60. Goodship V, Ogar E-O (2004) Polymer processing with supercritical fluid. Rapra review reports 15(8). Rapra Technology, Shawbury. ISBN: 9781859574942

    Google Scholar 

  61. Girotra P, Singh SK, Nagpal K (2013) Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 18(1):22–38. https://doi.org/10.3109/10837450.2012.726998

    Article  CAS  Google Scholar 

  62. Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW (2014) Amorphous solid dispersions theory and practice. Springer, New York

    Google Scholar 

  63. Pathak P, Meziani MJ, Sun Y (2005) Supercritical fluid technology for enhanced drug delivery. Expert Opin Drug Deliv 2(4):747–761. https://doi.org/10.1517/17425247.2.4.747

    Article  CAS  Google Scholar 

  64. Potter C, Tian Y, Walker G et al (2015) Novel supercritical carbon dioxide impregnation technique for the production of amorphous solid drug dispersions: a comparison to hot melt extrusion. Mol Pharm 12(5):1377–1390. https://doi.org/10.1021/mp500644h

    Article  CAS  Google Scholar 

  65. Alessi P, Cortesi A, Kikic I, Vecchione F (2003) Plasticization of polymers with supercritical carbon dioxide: experimental determination of glass-transition temperatures. J Appl Polym Sci 88(9):2189–2193. https://doi.org/10.1002/app.11881

    Article  CAS  Google Scholar 

  66. Ugaonkar S, Nunes AC, Needham TE (2007) Effect of n-scCO2 on crystalline to amorphous conversion of carbamazepine. Int J Pharm 333(1–2):152–161. https://doi.org/10.1016/j.ijpharm.2006.12.010

    Article  CAS  Google Scholar 

  67. Ugaonkar S, Needham TE, Bothun GD (2011) Solubility and partitioning of carbamazepine in a two-phase supercritical carbon dioxide/polyvinylpyrrolidone system. Int J Pharm 403(1–2):96–100. https://doi.org/10.1016/j.ijpharm.2010.10.031

    Article  CAS  Google Scholar 

  68. Williams GR, Chatterton NP, Nazir T, Yu DG, Zhu LM, Branford-White CJ (2012) Electrospun nanofibers in drug delivery: recent developments and perspectives. Ther Deliv 3:515–533. https://doi.org/10.4155/tde.12.17

  69. Jahangiri A, Adibkia K (2016) Applications of electrospinning/electrospraying in drug delivery. BioImpacts 6(1):1–2. 10.15171/bi.2016.08

    Article  Google Scholar 

  70. Chakraborty S, Liao I-C, Adler A, Leong KW (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61(12):1043–1054. https://doi.org/10.1016/j.addr.2009.07.013

    Article  CAS  Google Scholar 

  71. Verreck G, Chun I, Rosenblatt J et al (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92:349–360. https://doi.org/10.1016/S0168-3659(03)00342-0

    Article  CAS  Google Scholar 

  72. Brewster ME, Verreck G, Chun I et al (2004) The use of polymer-based electrospun nanofibers containing amorphous drug dispersions for the delivery of poorly water-soluble pharmaceuticals. Pharmazie 59(5):387–391

    CAS  Google Scholar 

  73. Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME (2003) Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res 20(5):810–817

    Article  CAS  Google Scholar 

  74. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer (Guildf) 43:4403–4412

    Article  CAS  Google Scholar 

  75. Nagy ZK, Balogh A, Démuth B et al (2015) High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm 480(1-2):137–142. https://doi.org/10.1016/j.ijpharm.2015.01.025

    Article  CAS  Google Scholar 

  76. Zhang S, Kawakami K, Yamamoto M et al (2011) Coaxial electrospray formulations for improving oral absorption of a poorly water-soluble drug. Mol Pharm 8:807–813

    Article  CAS  Google Scholar 

  77. Kawakami K, Zhang S, Singh R et al (2013) Preparation of fenofibrate solid dispersion using electrospray deposition and improvement in oral absorption by instantaneous post-heating of the formulation. Int J Pharm 450(1–2):123–128. https://doi.org/10.1016/j.ijpharm.2013.04.006

    Article  CAS  Google Scholar 

  78. Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38(1):23–33. https://doi.org/10.1016/j.tifs.2014.03.004

    Google Scholar 

  79. Karki S, Kim H, Na S, Shin D, Jo K, Lee J (2016) Thin films as an emerging platform for drug delivery. Asian J Pharm Sci 11:559–574. https://doi.org/10.1016/j.ajps.2016.05.004

    Article  Google Scholar 

  80. Parikh T, Gupta SS, Meena AK, Vitez I, Mahajan N, Serajuddin ATM (2015) Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate. J Pharm Sci 104:2142–2152. https://doi.org/10.1002/jps.24446

    Article  CAS  Google Scholar 

  81. Amin PM, Gangurde AB, Alai PV (2015) Oral film technology: challenges and future scope for pharmaceutical industry. Int J Pharm Pharm Res 3(3):184–203

    Google Scholar 

  82. Weuts I, Van Dycke F, Voorspoels J et al (2011) Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci 100(1):260–274. https://doi.org/10.1002/jps.22242

  83. Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van Den Mooter G (2010) Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and Eudragit E100. Pharm Res 27(5):775–785. https://doi.org/10.1007/s11095-010-0069-y

    Article  CAS  Google Scholar 

  84. Chatap VK, Wagh PN, Bari SB et al (2014) Novel spin coating technique for development of zolmitriptan mouth dissolving film. Int J Adv Chem Engg Biol Sci 1(1):110–113

    Google Scholar 

  85. Ng YC, Yang Z, McAuley WJ, Qi S (2013) Stabilisation of amorphous drugs under high humidity using pharmaceutical thin films. Eur J Pharm Biopharm 84(3):555–565. https://doi.org/10.1016/j.ejpb.2013.01.008

    Article  CAS  Google Scholar 

  86. Garner WE (ed) (1955) Chemistry of the solid state. Academic Press, New York

    Google Scholar 

  87. Young DA (1966) Decomposition of solids; v.1: International encyclopedia of physical chemistry and chemical physics; Topic 21, Solid and surface kinetics. Pergamon, Oxford

    Google Scholar 

  88. Makatun VN (1985) Chemistry of inorganic hydrates. Nauka & Tehnika, Minsk

    Google Scholar 

  89. Dollimore D (1987) The thermal decomposition of oxalates. A review. Thermochim Acta 117:331–363. https://doi.org/10.1016/0040-6031(87)88127-3

    Article  CAS  Google Scholar 

  90. Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids: chemical properties and reactivities of ionic crystalline phases, vol 86. Elsevier, Amsterdam

    Google Scholar 

  91. Galwey AK (2000) Structure and order in thermal dehydrations of crystalline solids. Thermochim Acta 355(1–2):181–238. https://doi.org/10.1016/S0040-6031(00)00448-2

    Article  CAS  Google Scholar 

  92. Petit S, Coquerel G (1996) Mechanism of several solid-solid transformations between dihydrated and anhydrous copper(II) 8-hydroxyquinolinates. Proposition for a unified model for the dehydration of molecular crystals. Chem Mater 8(9):2247–2258. https://doi.org/10.1021/cm9600438

    Article  CAS  Google Scholar 

  93. Petit S, Coquerel G (2009) Contribution to the understanding of desolvation mechanisms: impact of crystal size, structural purity and process. JEEP 16. https://doi.org/10.1051/jeep/200900016

  94. Willart JF, Descamps M (2008) Solid state amorphization of pharmaceuticals. Mol Pharm 5(6):905–920. https://doi.org/10.1021/mp800092t

    Article  CAS  Google Scholar 

  95. Li Y, Han J, Zhang GG, Grant DJ, Suryanarayanan R (2000) In situ dehydration of carbamazepine dihydrate: a novel technique to prepare amorphous anhydrous carbamazepine. Pharm Dev Technol 5(2):257–266. https://doi.org/10.1081/PDT-100100540

    Article  CAS  Google Scholar 

  96. Morris KR, Griesser UJ, Eckhardt CJ, Stowell JG (2001) Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv Drug Deliv Rev 48(1):91–114. https://doi.org/10.1016/S0169-409X(01)00100-4

    Article  CAS  Google Scholar 

  97. Pyne A, Chatterjee K, Suryanarayanan R (2003) Crystalline to amorphous transition of disodium hydrogen phosphate during primary drying. Pharm Res 20(5):802–803. https://doi.org/10.1023/A:1023445905372

    Article  CAS  Google Scholar 

  98. Kachrimanis K, Griesser UJ (2012) Dehydration kinetics and crystal water dynamics of carbamazepine dihydrate. Pharm Res 29(4):1143–1157. https://doi.org/10.1007/s11095-012-0698-4

    Article  CAS  Google Scholar 

  99. Petit S, Coquerel G (2006) The amorphous state. In: Hilfiker R (ed) Polymorphism in the pharmaceutical industry. Wiley-VCH, Weinheim, pp 259–285

    Chapter  Google Scholar 

  100. Tsirenova S, Suponitsky, YuL Karapetyanz Mk (1974) A comparative study of thermal properties of oxygen-containing compounds of Sc and Y. Zh Fiz Khim 48(11):2705–2707

    Google Scholar 

  101. Angell CA, Tucker JC (1974) Heat capacities and fusion entropies of the tetrahydrates of calcium nitrate, cadmium nitrate, and magnesium acetate. Concordance of calorimetric and relaxational ideal glass transition temperatures. J Phys Chem 78(3):278–281. http://pubs.acs.org/doi/abs/10.1021/j100596a018?journalCode=jpchax

  102. Guion J, Sauzade JD, Laügt M (1983) Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim Acta 67(2–3):167–179. https://doi.org/10.1016/0040-6031(83)80096-3

    Article  CAS  Google Scholar 

  103. Rani M, Govindarajan R, Surana R, Suryanarayanan R (2006) Structure in dehydrated trehalose dihydrate – evaluation of the concept of partial crystallinity. Pharm Res 23(10):2356–2367. https://doi.org/10.1007/s11095-006-9058-6

    Article  CAS  Google Scholar 

  104. Niepce JC, Watelle G, Brett NH (1977) Product crystallite size–reaction rate relationship in M(OH)2–MO decomposition. Structural transformation mechanism. J Chem Soc, Faraday Trans 1 Phys Chem Condens Phases 74:1530–1537. http://pubs.rsc.org | doi:https://doi.org/10.1039/F19787401530

  105. Mutin JC, Dusausoy Y (1981) Recherche d’une description structurale des decompositions endothermiques solide 1→ solide 2+ gaz. II. Caractéristiques structurales de la reaction 2 [H2C2O4, BaC2O4, 2H2O] → Ba(HC2O4)2, BaC2O4, 2H2O+ H2C2O4+ 2H2O. J Solid State Chem 38(3):394–405. https://doi.org/10.1016/0022-4596(81)90070-0

  106. Mutin JC, Watelle G, Dusausoy Y (1979) Study of a lacunary solid phase I—thermodynamic and crystallographic characteristics of its formation. J Solid State Chem 27:407–421. https://doi.org/10.1016/0022-4596(79)90183-X

    Article  CAS  Google Scholar 

  107. Schoonover JR, Lin SH, Eyring L (1987) Time-resolved the thermal X-ray diffraction by synchrotron radiation: decomposition of Cd(OH)2 powders. J Solid State Chem 218:214–218

    Google Scholar 

  108. Matvienko AA, Chizhik SA, Sidelnikov AA (2005) Factors controlling the morphology of the surface of BaC2O4 • H2C2O4 • 2H2O during its dehydration. Russ J Phys Chem A 79(9):1478–1482

    Google Scholar 

  109. Chizhik SA, Sidelnikov AA (2007) The kinetics of solid state reactions accompanied by fracture: I. Reaction of ion exchange in lime-soda glass. Solid State Ionics 178(23–24):1344–1352. https://doi.org/10.1016/j.ssi.2007.07.011

    Article  CAS  Google Scholar 

  110. Chizhik SA, Sidelnikov AA (2007) The kinetics of solid state reactions accompanied by fracture: II. Model of stationary front with disordered fracture morphology. Solid State Ionics 178(27–28):1487–1492. https://doi.org/10.1016/j.ssi.2007.09.010

    Article  CAS  Google Scholar 

  111. Chizhik SA, Sidelnikov AA (2008) The kinetics of solid state reactions accompanied by fracture: III. Model of stationary front with spatially ordered fracture morphology. Solid State Ionics 179(33–34):1823–1834. https://doi.org/10.1016/j.ssi.2008.05.002

    Article  CAS  Google Scholar 

  112. Larsen AS, Rantanen J, Johansson KE (2017) Computational dehydration of crystalline hydrates using molecular dynamics simulations. J Pharm Sci 106(1):348–355. https://doi.org/10.1016/j.xphs.2016.10.005

    Article  CAS  Google Scholar 

  113. Han J, Suryanarayanan R (1998) Influence of environmental conditions on the kinetics and mechanism of dehydration of carbamazepine dihydrate. Pharm Dev Technol 3(4):587–596. https://doi.org/10.3109/10837459809028643

    Article  CAS  Google Scholar 

  114. Griesser UJ, Burger A (1995) The effect of water vapor pressure on desolvation kinetics of caffeine 4/5-hydrate. Int J Pharm 120(1):83–93. https://doi.org/10.1016/0378-5173(94)00416-3

    Article  CAS  Google Scholar 

  115. Lallemant M, Watelle-Marion G (1967) Dégradation thermique du sulfate de magnésium heptahydraté sous pression de vapeur d’eau contrôlée. Mécanisme observé au-dessus de 50 torr. C R Acad Sci Paris C 264:2030–2033

    CAS  Google Scholar 

  116. Bertrand G, Lallemant M, Watelle-Marion G (1974) Variation anormale de la vitesse de decomposition d’un solide—I: Cas des deshydratations d’hydrates salins. J Inorg Nucl Chem 36:1303–1309. https://doi.org/10.1016/0022-1902(74)80068-0

    Article  CAS  Google Scholar 

  117. Bertrand G, Lallemant M, Mokhlisse A, Watelle-Marion G (1978) Abnormal variation of the rate of decomposition of a solid—II: A property common to interfacial endothermic reactions. J Inorg Nucl Chem 40(5):819–824. https://doi.org/10.1016/0022-1902(78)80158-4

    Article  CAS  Google Scholar 

  118. Lallemant M, Watelle-Marion G (1968) Anomalies presentees par la dissociation thermique, sous faible pression de vapeur d’eau, du sulfate du cuivre pentahydrate. C R Acad Sci Paris C 267(26):1775–1778

    CAS  Google Scholar 

  119. Chupakhin AP, Lyakhov NZ (1979) Dependence of the rate of water evaporation on the pressure of its vapor. Thermochim Acta 29:192–195. https://doi.org/10.1016/0040-6031(79)85033-9

    Article  CAS  Google Scholar 

  120. Ferrier A (1966) Influence de l’état de division de la goethite et de l’oxyde ferrique sur leurs chaleurs de réaction. Revue de Chimie minérale 3:587–615

    Google Scholar 

  121. Yatsimirskii VK (1970) Minimal size of crystalline particles. Theor Exp Chem 6(5):587–615

    Google Scholar 

  122. Kimoto K, Nishida I (1973) Crystal structures of very small particles of chromium and iron. Thin Solid Films 17(1):49–58. https://doi.org/10.1016/0040-6090(74)90238-7

    Article  CAS  Google Scholar 

  123. Taylor LS, York P (1998) Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration. J Pharm Sci 87(3):347–355. https://doi.org/10.1021/js970239m

    Article  CAS  Google Scholar 

  124. Bregeault J-M, Pannetier G (1969) Etude de la dissociation thermique des sulfates et des sulfates basiques. Sur les polymorphisme du sulfate de zinc. Bull Soc Chim Fr 4:1061–1065

    Google Scholar 

  125. Walter LL, Quemneur E (1968) Sur la thermolyse des sulfates ferrique. Bull Soc Chim Fr 4:1061–1065

    Google Scholar 

  126. Bernstein J (2002) Polymorphism in molecular crystals. Clarendon Press/International Union of Crystallography Monographs on Crystallography, Oxford

    Google Scholar 

  127. Llinàs A, Burley JC, Prior TJ, Glen RC, Goodman JM (2008) Concomitant hydrate polymorphism in the precipitation of sparfloxacin from aqueous solution. Cryst Growth Des 8(1):114–118. https://doi.org/10.1021/cg700908m

    Article  CAS  Google Scholar 

  128. Minkov VS, Beloborodova AA, Drebushchak VA, Boldyreva EV (2014) Furosemide solvates: can they serve as precursors to different polymorphs of furosemide? Cryst Growth Des 14(2):513–522. https://doi.org/10.1021/cg401257w

    Article  CAS  Google Scholar 

  129. Beloborodova AA, Minkov VS, Rychkov DA, Rybalova TV, Boldyreva EV (2017) First evidence of polymorphism in furosemide solvates. Cryst Growth Des 17(5):2333–2341. https://doi.org/10.1021/acs.cgd.6b01191

    Article  CAS  Google Scholar 

  130. Otsuka M, Kaneniwa N (1990) Effect of grinding on the crystallinity and chemical stability in the solid state of cephalothin sodium. Int J Pharm 62(1):65–73. https://doi.org/10.1016/0378-5173(90)90031-X

    Article  CAS  Google Scholar 

  131. Ward GH, Schultz RK (1995) Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm Res 12(5):773–779. https://link.springer.com/article/10.1023/A:1016232230638

  132. Shakhtshneider T, Boldyrev V (1999) Mechanochemical synthesis and mechanical activation of drugs. In: Boldyreva E, Boldyrev V (eds) Reactivity of solids. Chichester, Wiley, pp 271–311

    Google Scholar 

  133. Descamps M, Willart JF, Dudognon E, Caron V (2007) Transformation of pharmaceutical compounds upon milling and comilling: the role of Tg. J Pharm Sci 96(5):1398–1407. https://doi.org/10.1002/jps.20939

    Article  CAS  Google Scholar 

  134. Descamps M (2016) Disordered pharmaceutical materials. Wiley-VCH, Weinheim

    Book  Google Scholar 

  135. Boldyreva E (2016) Non-ambient conditions in the investigation and manufacturing of drug forms. Curr Pharm Des 22(32):4981–5000. http://www.ingentaconnect.com/contentone/ben/cpd/2016/00000022/00000032/art00009

    Article  CAS  Google Scholar 

  136. Gubskaya AV, Lisnyak YV (1995) Effect of cryogrinding on physico-chemical properties of drugs. I. Theophylline: evaluation of particles sizes and the degree of crystallinity, relation to dissolution parameters. Drug Dev Ind Pharm 21(17):1953–1964. https://doi.org/10.3109/03639049509065880.

    Article  CAS  Google Scholar 

  137. Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12. https://doi.org/10.1021/js9601896

    Article  CAS  Google Scholar 

  138. Mosharraf M, Sebhatu T, Nyström C (1999) The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs. Int J Pharm 177(1):29–51. https://doi.org/10.1016/S0378-5173(98)00317-2

    Article  CAS  Google Scholar 

  139. Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4):397–404. https://www.ncbi.nlm.nih.gov/labs/articles/10870982/

    Article  CAS  Google Scholar 

  140. Mosharraf M, Nyström C (2003) Apparent solubility of drugs in partially crystalline systems. Drug Dev Ind Pharm 29(6):603–622. https://doi.org/10.1081/DDC-120021310

    Article  CAS  Google Scholar 

  141. Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48(1):27–42. https://doi.org/10.1016/S0169-409X(01)00098-9

    Article  CAS  Google Scholar 

  142. Brough C, Williams RO (2013) Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 453(1):157–166. https://doi.org/10.1016/j.ijpharm.2013.05.061

    Article  CAS  Google Scholar 

  143. Allesø M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J (2009) Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen-cimetidine mixtures prepared by mechanical activation. J Control Release 136(1):45–53. https://doi.org/10.1016/j.jconrel.2009.01.027

    Article  CAS  Google Scholar 

  144. Sharafutdinova D, Efremov YY, Rizvanov IH, Konygin GN, Rybin DS, Strelkov NS (2010) Composition and structure of calcium gluconate and its mechanoactivated (nanodispersed) form. J Struct Chem 51:S142–S144. doi:https://link.springer.com/article/10.1007%2Fs10947-010-0203-z?LI=true

  145. Boldyreva E (2013) Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem Soc Rev 42:7719–7738. https://doi.org/10.1039/c3cs60052a

    Article  CAS  Google Scholar 

  146. Losev EA, Boldyreva EV (2014) The role of a liquid in “dry” co-grinding: a case study of the effect of water on mechanochemical synthesis in a “l-serine–oxalic acid” system. CrystEngComm 16(19):3857. https://doi.org/10.1039/c3ce42321b

    Article  CAS  Google Scholar 

  147. Karki S, Friščić T, Jones W, Motherwell WDS (2007) Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm 4(3):347–354. https://doi.org/10.1021/mp0700054

    Article  CAS  Google Scholar 

  148. Belenguer AM, Lampronti GI, Cruz-Cabeza AJ, Hunter CA, Sanders JKM (2016) Solvation and surface effects on polymorph stabilities at the nanoscale. Chem Sci 72:171–179. https://doi.org/10.1039/C6SC03457H

    Google Scholar 

  149. Bahl D, Bogner RH (2006) Amorphization of indomethacin by co-grinding with Neusilin US2: Amorphization kinetics, physical stability and mechanism. Pharm Res 23(10):2317–2325. https://doi.org/10.1007/s11095-006-9062-x

    Article  CAS  Google Scholar 

  150. Linol J, Morelli T, Petit M-N, Coquerel G (2007) Inversion of the relative stability between two polymorphic forms of (±) modafinil under dry high-energy milling: comparisons with results obtained under wet high-energy milling. Cryst Growth Des 7(9):1608–1611. https://doi.org/10.1021/cg0700723

    Article  CAS  Google Scholar 

  151. Tumanov IA, Michalchuk AAL, Politov AA, Boldyreva EV, Boldyrev VV (2017) Inadvertent liquid assisted grinding: a key to “dry” organic mechano-co-crystallisation? CrystEngComm 19:2830–2835. https://doi.org/10.1039/C7CE00517B

    Article  CAS  Google Scholar 

  152. Gupta MK, Vanwert A, Bogner RH (2003) Formation of physically stable amorphous drugs by milling with neusilin. J Pharm Sci 92(3):536–551. https://doi.org/10.1002/jps.10308

    Article  CAS  Google Scholar 

  153. Politov A, Golyazimova O (2014) Increasing the energy yield of mechanochemical transformations: selected case studies. Faraday Discuss 170:345–356. https://doi.org/10.1039/c3fd00143a

    Article  CAS  Google Scholar 

  154. Orowan E (1949) Fracture and strength of solids. Reports Prog Phys 12(1):185. https://doi.org/10.1088/0034-4885/12/1/309

    Article  Google Scholar 

  155. De Gusseme A, Neves C, Willart JF, Rameau A, Descamps M (2008) Ordering and disordering of molecular solids upon mechanical milling: the case of fananserine. J Pharm Sci 97(11):5000–5012. https://doi.org/10.1002/jps.21472

    Article  CAS  Google Scholar 

  156. Lepek P, Sawicki W, Wlodarski K, Wojnarowska Z, Paluch M, Guzik L (2013) Effect of amorphization method on telmisartan solubility and the tableting process. Eur J Pharm Biopharm 83(1):114–121. https://doi.org/10.1016/j.ejpb.2012.09.019

    Article  CAS  Google Scholar 

  157. Willart JF, De Gusseme A, Odou G, Danede F, Descamps M (2001) Direct crystal to glass transformations of trehalose induced by milling, dehydration and annealing. Solid State Commun 119:501–505. https://doi.org/10.1016/S0038-1098(01)00283-6

    Article  CAS  Google Scholar 

  158. Willart JF, Caron V, Lefort R, Danède F, Prévost D, Descamps M (2004) Athermal character of the solid state amorphization of lactose induced by ball milling. Solid State Commun 132(10):693–696. https://doi.org/10.1016/j.ssc.2004.09.007

    Article  CAS  Google Scholar 

  159. Dujardin N, Willart JF, Dudognon E et al (2008) Solid state vitrification of crystalline α and β-D-glucose by mechanical milling. Solid State Commun 148(1–2):78–82. https://doi.org/10.1016/j.ssc.2008.07.002

    Article  CAS  Google Scholar 

  160. Descamps M, Aumelas A, Desprez S, Willart JF (2015) The amorphous state of pharmaceuticals obtained or transformed by milling: sub-Tg features and rejuvenation. J Non Cryst Solids 407:72–80. https://doi.org/10.1016/j.jnoncrysol.2014.08.055

    Article  CAS  Google Scholar 

  161. Otsuka MM, Kaneniwa N (1983) Effect of grinding on the degree of crystallinity of cephalexin powder. Chem Pharm Bull (Tokyo) 31(12):4489–4495. https://doi.org/10.1248/cpb.31.4489

    Article  CAS  Google Scholar 

  162. Shakhtshneider TP (1997) Phase transformations and stabilization of metastable states of molecular crystals under mechanical activation. Solid State Ionics 101–103:851–856. doi:https://doi.org/10.1016/S0167-2738(97)00224-5

  163. Kaneniwa N, Otsuka M (1985) Effect of grinding on the transformations of polymorphs of chloramphenicol palmitate. Chem Pharm Bull 33(4):1660–1668. https://doi.org/10.1248/cpb.33.1660

    Article  CAS  Google Scholar 

  164. Desprez S, Descamps M (2006) Transformations of glassy indomethacin induced by ball-milling. J Non Cryst Solids 352(42–49 Spl Iss):4480–4485. doi:https://doi.org/10.1016/j.jnoncrysol.2006.02.130

  165. Vasikhovskaia VA (2016) Physical and chemical properties of starch after brittle comminution. Thesis, Novosibirsk State University. http://www.nsu.ru/xmlui/handle/nsu/10966

  166. Esersky V, Savitskaya A (1992) Mechanical activation of sulfanilamides on communication. Zhurn Fiz Khim 66:3109–3114

    Google Scholar 

  167. Boldyrev VV (1972) Kinetic factors in mechanochemical processes in inorganic systems. Kinet Catal 13(6):1411–1421

    CAS  Google Scholar 

  168. Boldyrev VV (2006) Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75(3):177–199. http://iopscience.iop.org/article/10.1070/RC2006v075n03ABEH001205/meta

  169. Michalchuk AAL, Tumanov IA, Drebushchak VA, Boldyreva EV (2014) Advances in elucidating mechanochemical complexities via implementation of a simple organic system. Faraday Discuss 170:311–335. https://doi.org/10.1039/C3FD00150D

    Article  CAS  Google Scholar 

  170. Yoshioka M, Hancock BC, Zografi G (1994) Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 83(12):1700–1705. https://doi.org/10.1002/jps.2600831211

    Article  CAS  Google Scholar 

  171. Schammé B, Couvrat N, Malpeli P et al (2016) Transformation of an active pharmaceutical ingredient upon high-energy milling: a process-induced disorder in biclotymol. Int J Pharm 499(1–2):67–73. https://doi.org/10.1016/j.ijpharm.2015.12.032

    Article  CAS  Google Scholar 

  172. Feng T, Pinal R, Carvajal MT (2008) Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin. J Pharm Sci 97(8):3207–3221. https://doi.org/10.1002/jps.21219

    Article  CAS  Google Scholar 

  173. Patterson JE, James MB, Forster AH, Lancaster RW, Butler JM, Rades T (2005) The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds. J Pharm Sci 94(9):1998–2012. https://doi.org/10.1002/jps.20424

    Article  CAS  Google Scholar 

  174. Graeser KA, Strachan CJ, Gordon K, Patterson JE, Gordon KC, Rades T (2008) Physicochemical properties and stability of two differently prepared amorphous forms of simvastatin. Cryst Growth Des 8(1):128–135. https://doi.org/10.1021/cg700913m

    Article  CAS  Google Scholar 

  175. Grisedale LC, Jamieson MJ, Belton PS, Barker SA, Craig M, Duncan Q (2011) Characterization and quantification of amorphous material in milled and spray-dried salbutamol sulfate: a comparison of thermal, spectroscopic, and water vapor sorption approaches. J Pharm Sci 100(8):3114–3129. https://doi.org/10.1002/jps.22484

    Article  CAS  Google Scholar 

  176. Wlodarski K, Sawicki W, Paluch KJ et al (2014) The influence of amorphization methods on the apparent solubility and dissolution rate of tadalafil. Eur J Pharm Sci 62:132–140. https://doi.org/10.1016/j.ejps.2014.05.026

    Article  CAS  Google Scholar 

  177. Hancock BC, Shalaev E, Shamblin SL (2002) Polyamorphism: a pharmaceutical science perspective. J Pharm Pharmacol 54(8):1151–1152. https://doi.org/10.1211/002235702320266343

    Article  CAS  Google Scholar 

  178. Turnbull D (1976) Relation of crystallization behavior to structure in amorphous systems. Ann NY Acad Sci 279:185. https://doi.org/10.1111/j.1749-6632.1976.tb39706.x

  179. Andronis V, Zografi G (2000) Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non Cryst Solids 271(3):236–248. https://doi.org/10.1016/S0022-3093(00)00107-1

    Article  CAS  Google Scholar 

  180. Politov AA, Kostrovskii VG, Boldyrev VV (2001) Conditions of preparation and crystallization of amorphous paracetamol. Russ J Phys Chem A 75(11):1903–1911. http://cat.inist.fr/?aModele=afficheN&cpsidt=13620211

  181. Gaffet E, Abdellaoui M, Malhouroux-Gaffet N (1995) Formation of nanostructural materials induced by mechanical processings (overview). Mater Trans 36(2):198–209. https://doi.org/10.2320/matertrans1989.36.198

    Article  CAS  Google Scholar 

  182. Caron V, Willart JF, Lefort R, Derollez P, Dande F, Descamps M (2011) Solid state amorphization kinetic of alpha lactose upon mechanical milling. Carbohydr Res 346(16):2622–2628. https://doi.org/10.1016/j.carres.2011.09.004

    Article  CAS  Google Scholar 

  183. Shalaev E, Wu K, Shamblin S, Krzyzaniak JF, Descamps M (2016) Crystalline mesophases: structure, mobility, and pharmaceutical properties. Adv Drug Deliv Rev 100:194–211. https://doi.org/10.1016/j.addr.2016.04.002

    Article  CAS  Google Scholar 

  184. Surovtsev NV, Adichtchev SV, Malinovsky VK et al (2012) Glycine phases formed from frozen aqueous solutions: revisited. J Chem Phys 137(6). https://doi.org/10.1063/1.4739532

  185. Ogienko AG, Bogdanova EG, Trofimov NA et al (2017) Large porous particles for respiratory drug delivery. Glycine-based formulations. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2017.05.007

  186. Boldyrev VV, Shakhtshneider TP, Burleva LP, Severtsev VA (1994) Preparation of the disperse systems of sulfathiazole-polyvinylpirrolidone by mechanical activation. Drug Dev Ind Pharm 20(6):1103–1114. https://doi.org/10.3109/03639049409038355.

    Article  CAS  Google Scholar 

  187. Shakhtshneider TP, Vasiltchenko MA, Politov AA, Boldyrev VV (1996) The mechanochemical preparation of solid disperse systems of ibuprofen-polyethylene glycol. Int J Pharm 130(1):25–32. https://doi.org/10.1016/0378-5173(95)04244-X

    Article  CAS  Google Scholar 

  188. Shakhtshneider TP, Vasilchenko MA, Politov AA (1997) Mechanochemical preparation of drug carrier solid dispersions. J Therm Anal 48:491–501. https://doi.org/10.1007/BF01979496

    Article  CAS  Google Scholar 

  189. Ivashchenko GL, Shakhtshneider TP, Boldyrev VV, Bazarnova NG, Medvedeva AS, Safronova LP (2003) Effect of mechanical activation on the physicochemical properties of piroxicam with chitosan. Mendeleev Commun 13(1):3–5. https://doi.org/10.1070/MC2003v013n01ABEH001644.

    Article  CAS  Google Scholar 

  190. Drebushchak VA, Shakhtshneider TP, Apenina SA, Medvedeva AS, Safronova LP, Boldyrev VV (2006) Thermoanalytical investigation of drug-excipient interaction: Part II. Activated mixtures of piroxicam with cellulose and chitosan. J Therm Anal Calorim 86(2):303–309. https://doi.org/10.1007/s10973-005-7440-y

    Article  CAS  Google Scholar 

  191. Shakhtshneider TP, Danède F, Capet F et al (2007) Grinding of drugs with pharmaceutical excipients at cryogenic temperatures. Part I. Cryogenic grinding of piroxicam-polyvinylpyrrolidone mixtures. J Therm Anal Calorim 89:699–707. https://doi.org/10.1007/s10973-006-7958-7

    Article  CAS  Google Scholar 

  192. Shakhtshneider TP, Danède F, Capet F et al (2007) Grinding of drugs with pharmaceutical excipients at cryogenic temperatures. Part II. Cryogenic grinding of indomethacin-polyvinylpyrrolidone mixtures. J Therm Anal Calorim 89:709–715. https://doi.org/10.1007/s10973-006-7959-6

    Article  CAS  Google Scholar 

  193. Dushkin A V, Meteleva ES, Tolstikova TG et al (2008) Mechanochemical preparation and pharmacological activities of water-soluble intermolecular complexes of arabinogalactan with medicinal agents. Russ Chem Bull 57(6):1299–1307. https://link.springer.com/article/10.1007%2Fs11172-008-0167-8?LI=true

  194. Caron V, Tajber L, Corrigan OI, Healy AM (2011) A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Mol Pharm 8(2):532–542. https://doi.org/10.1021/mp1003674

    Article  CAS  Google Scholar 

  195. Shakhtshneider TP, Kuznetsova SA, Mikhailenko MA et al (2013) Effect of mechanochemical treatment on physicochemical and antitumor properties of betulin diacetate mixtures with arabinogalactan. Chem Nat Compd 49(3):470–474. https://doi.org/10.1007/s10600-013-0641-x

    Article  CAS  Google Scholar 

  196. Miyazaki T, Yoshioka S, Aso Y, Kojima S (2004) Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 93(11):2710–2717. https://doi.org/10.1002/jps.20182

    Article  CAS  Google Scholar 

  197. Balani PN, Wong SY, Ng WK, Widjaja E, Tan RBH, Chan SY (2010) Influence of polymer content on stabilizing milled amorphous salbutamol sulphate. Int J Pharm 391(1–2):125–136. https://doi.org/10.1016/j.ijpharm.2010.02.029

    Article  CAS  Google Scholar 

  198. Balani PN, Ng WK, Tan RB, Chan SY (2010) Influence of excipients in comilling on mitigating milling-induced amorphization or structural disorder of crystalline pharmaceutical actives. J Pharm Sci 10(5):2462–2474. https://doi.org/10.1002/jps.21998

    Article  CAS  Google Scholar 

  199. Boldyrev VV, Shakhtshneider TP, Chizhik SA (2005) On the mechanism of solubilization of drugs in the presence of poorly soluble additives. Int J Pharm 295(1-2):177–182. https://doi.org/10.1016/j.ijpharm.2005.02.011

    Article  CAS  Google Scholar 

  200. Shakhtshneider TP, Myz SA, Mikhailenko MA et al (2009) Mechanochemical synthesis of nanocomposites of drugs with inorganic oxides. Mater Manuf Process 24:1064–1071. https://doi.org/10.1080/10426910902979124

    Article  CAS  Google Scholar 

  201. Shakhtshneider TP, Myz SA, Dyakonova MA et al (2011) Mechanochemical preparation of organic-inorganic hybrid materials of drugs with inorganic oxides. Acta Phys Pol A 120(2). https://www.researchgate.net/profile/Rakesh_Kumar173/publication/262842074_Mechanochemical_Preparation_of_Organic-Inorganic_Hybrid_Materials_of_Drugs_with_Inorganic_Oxides/links/53db14970cf2e38c63397fbb.pdf

  202. Watanabe T, Wakiyama N, Usui F, Ikeda M, Isobe T, Senna M (2001) Stability of amorphous indomethacin compounded with silica. Int J Pharm 226(1):81–91. https://doi.org/10.1016/S0378-5173(01)00776-1

    Article  CAS  Google Scholar 

  203. Lobmann K, Grohganz H, Laitinen R, Strachan C, Rades T (2013) Amino acids as co-amorphous stabilizers for poorly water soluble drugs – Part 1: Preparation, stability and dissolution enhancement. Eur J Pharm Biopharm 85(3 PART B):873–881. https://doi.org/10.1016/j.ejpb.2013.03.014

  204. Dudognon E, Willart JF, Caron V, Capet F, Larsson T, Descamps M (2006) Formation of budesonide/α-lactose glass solutions by ball-milling. Solid State Commun 138(2):68–71. https://doi.org/10.1016/j.ssc.2006.02.007

    Article  CAS  Google Scholar 

  205. Chieng N, Aaltonen J, Saville D, Rades T (2009) Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur J Pharm Biopharm 71(1):47–54. https://doi.org/10.1016/j.ejpb.2008.06.022

    Article  CAS  Google Scholar 

  206. Abe K, Ogawa T, Uchino T, Otsuka M, Takano-Ohmuro H, Senna M (2010) Highly-efficient amorphization of drugs by the participation of molecular complex. Trans Mater Res Soc Jpn 5(3):717–721. 10.14723/tmrsj.35.717

    Article  Google Scholar 

  207. Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698. https://doi.org/10.1023/A:1012167410376

    Article  CAS  Google Scholar 

  208. Mikhailenko MA, Shakhtshneider TP, Eltsov IV et al (2016) Supramolecular architecture of betulin diacetate complexes with arabinogalactan from Larix sibirica. Carbohydr Polym 138:1–7. https://doi.org/10.1016/j.carbpol.2015.11.047

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rams-Baron, M., Jachowicz, R., Boldyreva, E., Zhou, D., Jamroz, W., Paluch, M. (2018). Amorphous Drug Preparation Methods. In: Amorphous Drugs. Springer, Cham. https://doi.org/10.1007/978-3-319-72002-9_4

Download citation

Publish with us

Policies and ethics