Skip to main content

State of the Art

  • Chapter
  • First Online:
Inkjet-Configurable Gate Array

Part of the book series: Springer Theses ((Springer Theses))

  • 497 Accesses

Abstract

In this chapter, a brief introduction about the state of the art in respect to different aspects of printed electronics is provided. The goal of this chapter is to set the ground for ongoing investigations about development of organic devices and circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press on Demand, New York, 1999)

    Google Scholar 

  2. D. Zielke, A.C. Hubler, U. Hahn, N. Brandt, M. Bartzsch, U. Fugmann, T. Fischer, J. Veres, S. Ogier, Polymer-based organic field-effect transistor using offset printed source/drain structures. Appl. Phys. Lett. 87(12), 123–508 (2005)

    Article  Google Scholar 

  3. B. Hamadani, D. Gundlach, I. McCulloch, M. Heeney, Undoped polythiophene field-effect transistors with mobility of 1 cm2 v-1 s-1. Appl. Phys. Lett. 91(24), 3512 (2007)

    Article  Google Scholar 

  4. H. Sirringhaus, R. Wilson, R. Friend, M. Inbasekaran, W. Wu, E. Woo, M. Grell, D. Bradley, Mobility enhancement in conjugated polymer fieldeffect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77(3), 406–408 (2000)

    Article  Google Scholar 

  5. G. Wang, J. Swensen, D. Moses, A.J. Heeger, Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors. J. Appl. Phys. 93, 6137–6141 (2003)

    Article  Google Scholar 

  6. S.K. Park, C.-C. Kuo, J.E. Anthony, T.N. Jackson, High mobility solution-processed otfts, in 2005 IEEE International Electron Devices Meeting, IEDM Technical Digest (IEEE, 2005), 4-pp

    Google Scholar 

  7. S.K. Park, J.E. Anthony, T.N. Jackson, Solution-processed tips-pentacene organic thin-film-transistor circuits. IEEE Electron Device Lett. 28(10), 877–879 (2007)

    Article  Google Scholar 

  8. T.W. Kelley, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, High performance organic thin film transistors, in MRS Proceedings, vol. 771 (Cambridge University Press, 2003), pp. L6–5

    Google Scholar 

  9. H. Tan, B. Wang, S. Kamath, J. Chua, M. Shojaei-Baghini, V.R. Rao, N. Mathews, S. Mhaisalkar, Complementary organic circuits using evaporated and inkjet printing of pqt. IEEE Electron Device Lett. 31(11), 1311–1313 (2010)

    Google Scholar 

  10. T.D. Anthopoulos, B. Singh, N. Marjanovic, N. Saricifici, A.M. Ramil, H. Sitter, M. Colle, D.M. de Leeuw, High performance n-channel organic field-effect transistors and ring oscillators based on c60 fullerene films. Appl. Phys. Lett. 89(21), 213 504–213 504 (2006)

    Article  Google Scholar 

  11. B. Kjellander, W.T. Smaal, J.E. Anthony, G.H. Gelinck, Inkjet printing of tips-pen on soluble polymer insulating films: a route to high-performance thin-film transistors. Adv. Mater. 22(41), 4612–4616 (2010)

    Article  Google Scholar 

  12. J. Smith, W. Zhang, R. Sougrat, K. Zhao, R. Li, D. Cha, A. Amassian, M. Heeney, I. McCulloch, T.D. Anthopoulos, Solution-processed small moleculepolymer blend organic thin-film transistors with hole mobility greater than 5 cm2/vs. Adv. Mater. 24(18), 2441–2446 (2012)

    Article  Google Scholar 

  13. R. Hamilton, J. Smith, S. Ogier, M. Heeney, J.E. Anthony, I. McCulloch, J. Veres, D.D. Bradley, T.D. Anthopoulos, High-performance polymer-small molecule blend organic transistors. Adv. Mater. 21(10–11), 1166–1171 (2009)

    Article  Google Scholar 

  14. D. De Leeuw, M. Simenon, A. Brown, R. Einerhand, Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Metals 87(1), 53–59 (1997)

    Article  Google Scholar 

  15. T. Ashimine, T. Yasuda, M. Saito, H. Nakamura, T. Tsutsui, Air stability of p-channel organic field-effect transistors based on oligo-p-phenylenevinylene derivatives. Jpn. J. Appl. Phys. 47(3R), 1760 (2008)

    Article  Google Scholar 

  16. T.D. Anthopoulos, F.B. Kooistra, H.J. Wondergem, D. Kronholm, J.C. Hummelen, D.M. de Leeuw, Air-stable n-channel organic transistors based on a soluble c84 fullerene derivative. Adv. Mater. 18(13), 1679–1684 (2006)

    Article  Google Scholar 

  17. C. Drury, C. Mutsaers, C. Hart, M. Matters, D. De Leeuw, Low-cost allpolymer integrated circuits. Appl. Phys. Lett. 73(1), 108–110 (1998)

    Article  Google Scholar 

  18. G. Gelinck, T. Geuns, D. De Leeuw, High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77(10), 1487–1489 (2000)

    Article  Google Scholar 

  19. K.B. Blodgett, I. Langmuir, Built-up films of barium stearate and their optical properties. Phys. Rev. 51(11), 964 (1937)

    Article  Google Scholar 

  20. J. Collet, O. Tharaud, A. Chapoton, D. Vuillaume, Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Appl. Phys. Lett. 76(14), 1941–1943 (2000)

    Article  Google Scholar 

  21. Y. Matsuhisa, K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, T. Komoda, Highly efficient oled lighting for eco-solution, in Microoptics Conference (MOC) (IEEE, 2013), pp. 1–2

    Google Scholar 

  22. T. Sauter, W. Hortschitz, H. Steiner, M. Stifter, H. Chiao, H.W. Zan, H.-F. Meng, P. Chao, Making optical mems sensors more compact using organic light sources and detectors, in Emerging Technology and Factory Automation (ETFA) (IEEE, 2014), pp. 1–4

    Google Scholar 

  23. M. Koden, Flexible substrates and non-ito transparent electrodes for organic electronics, in 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), vol. 2015 (IEEE, 2015), pp. 13–16

    Google Scholar 

  24. R. Soukup, A. Hamacek, J. Reboun, Organic based sensors: novel screen printing technique for sensing layers deposition, in 2012 35th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2012), pp. 19–24

    Google Scholar 

  25. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911–918 (2004)

    Article  Google Scholar 

  26. M. Jung, J. Kim, J. Noh, N. Lim, C. Lim, G. Lee, J. Kim, H. Kang, K. Jung, A.D. Leonard et al., All-printed and roll-to-roll-printable 13.56-mhz-operated 1-bit rf tag on plastic foils. IEEE Trans. Electron Devices 57(3), 571–580 (2010)

    Article  Google Scholar 

  27. J.A. Rogers, Z. Bao, A. Dodabalapur, A. Makhija, Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting and rubber stamping. IEEE Electron Device Lett. 21(3), 100–103 (2000)

    Article  Google Scholar 

  28. M. Weaver, L. Michalski, K. Rajan, M. Rothman, J. Silvernail, J.J. Brown, P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin et al., Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl. Phys. Lett. 81(16), 2929–2931 (2002)

    Article  Google Scholar 

  29. G.H. Gelinck, A. Kumar, D. Moet, J.-L. P. van Steen, A.J. van Breemen, S. Shanmugam, A. Langen, J. Gilot, P. Groen, R. Andriessen, et al., X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes (2016)

    Google Scholar 

  30. M. Kane, J. Campi, M. Hammond, F. Cuomo, B. Greening, C. Sheraw, J. Nichols, D. Gundlach, J. Huang, C. Kuo et al., Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett. 21(11), 534–536 (2000)

    Article  Google Scholar 

  31. G. Orecchini, R. Zhang, J. Agar, D. Staiculescu, M. Tentzeris, L. Roselli, C. Wong, Inkjet printed organic transistors for sustainable electronics, in 2010 Proceedings of 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 985–989

    Google Scholar 

  32. J. Kawahara, P.A. Ersman, K. Katoh, M. Berggren, Fast-switching printed organic electrochemical transistors including electronic vias through plastic and paper substrates. IEEE Trans. Electron Devices 60(6), 2052–2056 (2013)

    Article  Google Scholar 

  33. B. Kang, W.H. Lee, K. Cho, Recent advances in organic transistor printing processes. ACS Appl. Mater. Interface 5(7), 2302–2315 (2013)

    Article  Google Scholar 

  34. B. Kang, W.H. Lee, K. Cho, Recent advances in organic transistor printing processes. ACS Appl. Mater. Interface 5(7), 2302–2315 (2013)

    Article  Google Scholar 

  35. Y.D. Park, H.S. Lee, Y.J. Choi, D. Kwak, J.H. Cho, S. Lee, K. Cho, Solubility-induced ordered polythiophene precursors for high-performance organic thin-film transistors. Adv. Funct. Mater. 19(8), 1200–1206 (2009)

    Article  Google Scholar 

  36. Iso 14644-1:2015, http://www.iso.org/iso/catalogue_detail?csnumber=53394. Cleanroom and associated controlled environments

  37. B. Paivanranta, A. Langner, E. Kirk, C. David, Y. Ekinci, Sub-10 nm patterning using euv interference lithography. Nanotechnology 22(37), 375302 (2011)

    Article  Google Scholar 

  38. J.P. Silverman, X-ray lithography: Status, challenges, and outlook for 0.13 \(\mu \) m. J. Vac. Sci. Technol. B 15(6), 2117–2124 (1997)

    Article  Google Scholar 

  39. D.P. Sanders, Advances in patterning materials for 193 nm immersion lithography. Chem. Rev. 110(1), 321–360 (2010)

    Article  Google Scholar 

  40. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105(4), 1171–1196 (2005)

    Article  Google Scholar 

  41. I. Kymissis, C.D. Dimitrakopoulos, S. Purushothaman, Patterning pentacene organic thin film transistors. J. Vac. Sci. Technol. B 20(3), 956–959 (2002)

    Article  Google Scholar 

  42. H.S. Hwang, A. Zakhidov, J.-K. Lee, J.A. DeFranco, H.H. Fong, G.G. Malliaras, C.K. Ober, Photolithographic patterning in supercritical carbon dioxide: application to patterned light-emitting devices, in Flexible Electronics and Displays Conference and Exhibition (IEEE, 2008), pp. 1–4

    Google Scholar 

  43. D. Gundlach, J. Royer, S. Park, S. Subramanian, O. Jurchescu, B. Hamadani, A. Moad, R. Kline, L. Teague, O. Kirillov et al., Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat. Mater. 7(3), 216–221 (2008)

    Article  Google Scholar 

  44. M. Peter, F. Furthner, J. Deen, W.J. de Laat, E.R. Meinders, Lithographic patterning of metals on flexible plastic foils. Thin Solid Films 517(10), 3081–3086 (2009)

    Article  Google Scholar 

  45. Y.-Y. Lin, D. Gundlach, S. Nelson, T. Jackson, Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 18(12), 606–608 (1997)

    Article  Google Scholar 

  46. K.L. McCall, S.D. Ogier, B.A. Brown, S.R. Rutter, M. Palumbo, Y.U. Lee, L.A. Evans, T.J. Pease, Low voltage high mobility organic semiconductors for flexible display applications, in IDW Proceedings (2012)

    Google Scholar 

  47. F.C. Krebs, J. Fyenbo, M. Jørgensen, Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 20(41), 8994–9001 (2010)

    Article  Google Scholar 

  48. D.R. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed Organic and Molecular Electronics (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  49. J.B.-H. Tok, Z. Bao, Recent advances in flexible and stretchable electronics, sensors and power sources. Sci. China Chem. 55(5), 718–725 (2012)

    Article  Google Scholar 

  50. T. Makela, T. Haatainen, P. Majander, J. Ahopelto, Continuous roll to roll nanoimprinting of inherently conducting polyaniline. Microelectron. Eng. 84(5), 877–879 (2007)

    Article  Google Scholar 

  51. M.K. Kwak, K.H. Shin, E.Y. Yoon, K.Y. Suh, Fabrication of conductive metal lines by plate-to-roll pattern transfer utilizing edge dewetting and flexographic printing. J. Colloid Interface Sci. 343(1), 301–305 (2010)

    Article  Google Scholar 

  52. M. Hambsch, K. Reuter, M. Stanel, G. Schmidt, H. Kempa, U. Fugmann, U. Hahn, A. Hubler, Uniformity of fully gravure printed organic field-effect transistors. Mater. Sci. Eng.: B 170(1), 93–98 (2010)

    Article  Google Scholar 

  53. X. Yin, S. Kumar, Flow visualization of the liquid emptying process in scaled-up gravure grooves and cells. Chem. Eng. Sci. 61(4), 1146–1156 (2006)

    Article  Google Scholar 

  54. P.F. Moonen, I. Yakimets, J. Huskens, Fabrication of transistors on flexible substrates: From mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 24(41), 5526–5541 (2012)

    Article  Google Scholar 

  55. Z. Dirk, C.H. Arved, H. Ulrich, B. Nicole, B. Matthias, F. Uta, F. Thomas, V. Janos, O. Simon, Polymer-based organic field-effect transistor using offset printed source/drain structures. Appl. Phys. Lett. 87(12) (2005)

    Google Scholar 

  56. N. Choi, H. Wee, S. Nam, J. Lavelle, M. Hatalis, A modified offset roll printing for thin film transistor applications. Microelectron. Eng. 91, 93–97 (2012)

    Article  Google Scholar 

  57. G.A. Jones, Printers’ national environmental assistance center

    Google Scholar 

  58. R. Søndergaard, M. Hosel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells. Mater. Today 15(1), 36–49 (2012)

    Google Scholar 

  59. S.E. Shaheen, R. Radspinner, N. Peyghambarian, G.E. Jabbour, Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79(18), 2996–2998 (2001)

    Article  Google Scholar 

  60. D.A. Pardo, G.E. Jabbour, N. Peyghambarian, Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12(17), 1249–1252 (2000)

    Article  Google Scholar 

  61. F.C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Solar Energy Mater. Solar Cells 83(2), 293–300 (2004)

    Article  Google Scholar 

  62. I.E.H. El Jazairi, T. Trigaud, J.-P. Moliton, Otft with silk screen printed drain and source. Micro Nanosyst. 1(1), 46–49 (2009)

    Article  Google Scholar 

  63. M. Guerin, A. Daami, S. Jacob, E. Bergeret, E. Benevent, P. Pannier, R. Coppard, High-gain fully printed organic complementary circuits on flexible plastic foils. IEEE Trans. Electron Devices 58(10), 3587–3593 (2011)

    Article  Google Scholar 

  64. X. Ji, P.M. Hallam, S.M. Houssein, R. Kadara, L. Lang, C.E. Banks, Printable thin film supercapacitors utilizing single crystal cobalt hydroxide nanosheets. RSC Adv. 2(4), 1508–1515 (2012)

    Article  Google Scholar 

  65. H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499), 2123–2126 (2000)

    Article  Google Scholar 

  66. T. Kawase, H. Sirringhaus, R.H. Friend, T. Shimoda et al., Inkjet printed viahole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13(21), 1601 (2001)

    Article  Google Scholar 

  67. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. 105(13), 4976–4980 (2008)

    Article  Google Scholar 

  68. T.N. Ng, B. Russo, B. Krusor, R. Kist, A.C. Arias, Organic inkjetpatterned memory array based on ferroelectric field-effect transistors. Org. Electron. 12(12), 2012–2018 (2011)

    Article  Google Scholar 

  69. D. Redinger, S. Molesa, S. Yin, R. Farschi, V. Subramanian, An ink-jetdeposited passive component process for rfid. IEEE Trans. Electron Devices 51(12), 1978–1983 (2004)

    Article  Google Scholar 

  70. S.E. Molesa, S.K. Volkman, D.R. Redinger, A.F. Vornbrock, V. Subramanian, A high-performance all-inkjetted organic transistor technology, in 2004 IEEE International Electron Devices Meeting, IEDM Technical Digest (IEEE, 2004), pp. 1072–1074

    Google Scholar 

  71. S. Chung, J. Jang, J. Cho, C. Lee, S.-K. Kwon, Y. Hong, All-inkjet-printed organic thin-film transistors with silver gate, source/drain electrodes. Jpn. J. Appl. Phys. 50(3S), 03CB05 (2011)

    Article  Google Scholar 

  72. E. Ramon, Inkjet printed microelectronic devices and circuits, Ph.D. thesis, Universidad Autònoma de Barcelona (2014)

    Google Scholar 

  73. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing- process and its applications. Adv. Mater. 22(6), 673–685 (2010)

    Article  Google Scholar 

  74. T. Hebner, C. Wu, D. Marcy, M. Lu, J. Sturm, Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72(5), 519–521 (1998)

    Article  Google Scholar 

  75. Y. Gizachew, L. Escoubas, J. Simon, M. Pasquinelli, J. Loiret, P. Leguen, J. Jimeno, J. Martin, A. Apraiz, J. Aguerre, Towards ink-jet printed fine line front side metallization of crystalline silicon solar cells. Solar Energy Mater. Solar Cells 95, S70–S82 (2011)

    Article  Google Scholar 

  76. M.F. van Hest, S.E. Habas, J.M. Underwood, R.M. Pasquarelli, P. Hersh, A. Miedaner, C.J. Curtis, D.S. Ginley, Direct write metallization for photovoltaic cells and scaling thereof, in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), pp. 003 626–003 628

    Google Scholar 

  77. D.-H. Lee, S.-Y. Han, G.S. Herman, C.-H. Chang, Inkjet printed highmobility indium zinc tin oxide thin film transistors. J. Mater. Chem. 19(20), 3135–3137 (2009)

    Article  Google Scholar 

  78. V. Pekkanen, M. Mantysalo, K. Kaija, P. Mansikkamaki, E. Kunnari, K. Laine, J. Niittynen, S. Koskinen, E. Halonen, U. Caglar, Utilizing inkjet printing to fabricate electrical interconnections in a system-in-package. Microelectron. Eng. 87(11), 2382–2390 (2010)

    Article  Google Scholar 

  79. L. Xie, G. Yang, M. Mantysalo, L.-L. Xu, F. Jonsson, L.-R. Zheng, Heterogeneous integration of bio-sensing system-on-chip and printed electronics. IEEE J. Emerg. Sel. Top. Circuit. Syst. 2(4), 672–682 (2012)

    Article  Google Scholar 

  80. K. Myny, S. Smout, M. Rockele, A. Bhoolokam, T.H. Ke, S. Steudel, B. Cobb, A. Gulati, F.G. Rodriguez, K. Obata et al., A thin-film microprocessor with inkjet print-programmable memory. Sci. Rep. 4, 7398 (2014)

    Article  Google Scholar 

  81. T.N. Ng, D.E. Schwartz, L.L. Lavery, G.L. Whiting, B. Russo, B. Krusor, J. Veres, P. Broms, L. Herlogsson, N. Alam et al., Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory. Sci. Rep. 2, 585 (2012)

    Article  Google Scholar 

  82. H. Kipphan, Handbook of Print Media: Technologies and Production Methods (Springer Science & Business Media, Berlin, 2001)

    Book  Google Scholar 

  83. D.A. Herron, Continuous ink jet printer, US Patent 4,636,808 (1987)

    Google Scholar 

  84. J. Mei, M.R. Lovell, M.H. Mickle, Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-d electric circuits. IEEE Trans. Electron. Packag. Manuf. 28(3), 265–273 (2005)

    Article  Google Scholar 

  85. J. Heilmann, U. Lindqvist, Effect of drop size on the print quality in continuous ink jet printing. J. Imaging Sci. Technol. 44(6), 491–494 (2000)

    Google Scholar 

  86. W. Tang, Y. Chen, J. Zhao, S. Chen, L. Feng, X. Guo, Inkjet printing narrow fine ag lines on surface modified polymeric films, in 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, 2013), pp. 1171–1174

    Google Scholar 

  87. S. Mishra, K.L. Barton, A.G. Alleyne, P.M. Ferreira, J.A. Rogers, High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. J. Micromech. Microeng. 20(9), 095–026 (2010)

    Google Scholar 

  88. P.V. Raje, N.C. Murmu, A review on electrohydrodynamic-inkjet printing technology

    Google Scholar 

  89. K.-H. Choi, A. Khan, H.-C. Kim, K. Rahman, K.-R. Kwon, N.M. Muhammad, Y.-H. Doh, Electrohydrodynamic Inkjet-Micro Pattern Fabrication for Printed Electronics Applications (INTECH Open Access Publisher, 2011)

    Google Scholar 

  90. K. Wang, M.D. Paine, J.P. Stark, Fully voltage-controlled electrohydrodynamic jet printing of conductive silver tracks with a sub-100 \(\upmu \)m linewidth. J. Appl. Phys. 106(2), 024–907 (2009)

    Google Scholar 

  91. K. Wang, J.P. Stark, Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nano-ink. Appl. Phys. A 99(4), 763–766 (2010)

    Article  Google Scholar 

  92. D.-H. Youn, S.-H. Kim, Y.-S. Yang, S.-C. Lim, S.-J. Kim, S.-H. Ahn, H.-S. Sim, S.-M. Ryu, D.-W. Shin, J.-B. Yoo, Electrohydrodynamic micropatterning of silver ink using near-field electrohydrodynamic jet printing with tilted-outlet nozzle. Appl. Phys. A 96(4), 933–938 (2009)

    Google Scholar 

  93. D.-Y. Lee, J.-C. Lee, Y.-S. Shin, S.-E. Park, T.-U. Yu, Y.-J. Kim, J. Hwang, Structuring of conductive silver line by electrohydrodynamic jet printing and its electrical characterization, in Journal of Physics: Conference Series, vol. 142 (IOP Publishing, 2008), pp. 012–039

    Google Scholar 

  94. J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D. kishore Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis et al., Highresolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782–789 (2007)

    Article  Google Scholar 

  95. K. Murata, Super-fine ink-jet printing for nanotechnology, in 2013 International Conference on MEMS, NANO and Smart Systems, Proceedings (IEEE, 2003), pp. 346–349

    Google Scholar 

  96. K. Murata, J. Matsumoto, A. Tezuka, Y. Matsuba, H. Yokoyama, Superfine ink-jet printing: toward the minimal manufacturing system. Microsyst. Technol. 12(1–2), 2–7 (2005)

    Article  Google Scholar 

  97. K. Murata, Direct fabrication of super-fine wiring and bumping by using inkjet process, in Polytronic 2007-6th International Conference on Polymers and Adhesives in Microelectronics and Photonics (IEEE, 2007), pp. 293–296

    Google Scholar 

  98. K. Murata, Ultrafine fluid jet apparatus, US Patent 7,434,912 (2008)

    Google Scholar 

  99. M.-M. Laurila, Super inkjet printed redistribution layer for a MEMS device, Master’s thesis, Tampere University of Technology (2015)

    Google Scholar 

  100. Optomec official website, http://www.optomec.comOptomec

  101. T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner, R.R. Baumann, Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54(2), 769–779 (2015)

    Article  Google Scholar 

  102. C. Goth, S. Putzo, J. Franke, Aerosol jet printing on rapid prototyping materials for fine pitch electronic applications, in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (IEEE, 2011), pp. 1211–1216

    Google Scholar 

  103. P.K. Weimer, The tft a new thin-film transistor. Proc. IRE 50(6), 1462–1469 (1962)

    Article  Google Scholar 

  104. P. Le Comber, W. Spear, A. Ghaith, Amorphous-silicon field-effect device and possible application. Electron. Lett. 6(15), 179–181 (1979)

    Article  Google Scholar 

  105. A. Tsumura, H. Koezuka, T. Ando, Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49(18), 1210–1212 (1986)

    Article  Google Scholar 

  106. H. Sirringhaus, P. Brown, R. Friend, M.M. Nielsen, K. Bechgaard, B. Langeveld- Voss, A. Spiering, R.A. Janssen, E. Meijer, P. Herwig et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754), 685–688 (1999)

    Article  Google Scholar 

  107. M.L. Chabinyc, A. Salleo, Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chem. Mater. 16(23), 4509–4521 (2004)

    Article  Google Scholar 

  108. I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization (Springer Science & Business Media, Berlin, 2008)

    Google Scholar 

  109. P. Necliudov, M. Shur, D. Gundlach, T. Jackson, Modeling of organic thin film transistors of different designs. J. Appl. Phys. 88(11), 6594–6597 (2000)

    Article  Google Scholar 

  110. C.-H. Shim, F. Maruoka, R. Hattori, Structural analysis on organic thinfilm transistor with device simulation. IEEE Trans. Electron Devices 57(1), 195–200 (2010)

    Article  Google Scholar 

  111. D. Gupta, M. Katiyar, D. Gupta, An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation. Org. Electron. 10(5), 775–784 (2009)

    Article  Google Scholar 

  112. D. Gundlach, L. Zhou, J. Nichols, T. Jackson, P. Necliudov, M. Shur, An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100(2), 024–509 (2006)

    Google Scholar 

  113. D. Kumaki, T. Umeda, S. Tokito, Reducing the contact resistance of bottom-contact pentacene thin-film transistors by employing a moox carrier injection layer. Appl. Phys. Lett. 92(1), 13 301–13 301 (2008)

    Google Scholar 

  114. B. Stadlober, U. Haas, H. Gold, A. Haase, G. Jakopic, G. Leising, N. Koch, S. Rentenberger, E. Zojer, Orders-of-magnitude reduction of the contact resistance in short-channel hot embossed organic thin film transistors by oxidative treatment of au-electrodes. Adv. Funct. mater. 17(15), 2687–2692 (2007)

    Article  Google Scholar 

  115. F.-C. Chen, Y.-S. Lin, T.-H. Chen, L.-J. Kung, Efficient hole-injection in highly transparent organic thin-film transistors. Electrochem. Solid-State Lett. 10(6), H186–H188 (2007)

    Article  Google Scholar 

  116. D. Gundlach, T. Jackson, D. Schlom, S. Nelson, Solvent-induced phase transition in thermally evaporated pentacene films. Appl. Phys. Lett. 74(22), 3302–3304 (1999)

    Article  Google Scholar 

  117. T. Richards, H. Sirringhaus, Analysis of the contact resistance in staggered, top-gate organic field-effect transistors. J. Appl. Phys. 102(9), 094–510 (2007)

    Google Scholar 

  118. I. 1620, IEEE Standard Test Methods for Characterization of Organic Transistors and Materials (2004)

    Google Scholar 

  119. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C.D. Sheraw, J.A. Nichols, T.N. Jackson, Contact resistance in organic thin film transistors. Solid-State Electron. 47(2), 297–301 (2003)

    Article  Google Scholar 

  120. A. Petrovic, E. Pavlica, G. Bratina, A. Carpentiero, M. Tormen, Contact resistance in organic thin film transistors. Synth. Metals 159(12), 1210–1214 (2009)

    Article  Google Scholar 

  121. J. Zaumseil, K.W. Baldwin, J.A. Rogers, Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J. Appl. Phys. 93(10), 6117–6124 (2003)

    Article  Google Scholar 

  122. P. Servati, D. Striakhilev, A. Nathan, Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors. IEEE Trans. Electron Devices 50(11), 2227–2235 (2003)

    Article  Google Scholar 

  123. A. Valletta, A. Daami, M. Benwadih, R. Coppard, G. Fortunato, M. Rapisarda, F. Torricelli, L. Mariucci, Contact effects in high performance fully printed p-channel organic thin film transistors. Appl. Phys. Lett. 99(23), 233–309 (2011)

    Google Scholar 

  124. M. Shur, M. Hack, J.G. Shaw, A new analytic model for amorphous silicon thin-film transistors. J. Appl. Phys. 66(7), 3371–3380 (1989)

    Article  Google Scholar 

  125. H. Sirringhaus, N. Tessler, D. Thomas, P. Brown, R. Friend, High-mobility conjugated polymer field-effect transistors, Advances in Solid State Physics, vol. 39 (Springer, Berlin, 1999), pp. 101–110

    Google Scholar 

  126. W. Brutting, Physics of Organic Semiconductors (Wiley, New York, 2006)

    Google Scholar 

  127. A. Dodabalapur, Organic and polymer transistors for electronics. Mater. Today 9(4), 24–30 (2006)

    Article  Google Scholar 

  128. H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39(7), 2643–2666 (2010)

    Article  Google Scholar 

  129. C. Reese, M. Roberts, M.-M. Ling, Z. Bao, Organic thin film transistors. Mater. Today 7(9), 20–27 (2004)

    Article  Google Scholar 

  130. C.D. Dimitrakopoulos, D.J. Mascaro, Organic thin-film transistors: a review of recent advances. IBM J. Res. Dev. 45(1), 11–27 (2001)

    Article  Google Scholar 

  131. S. Abdinia, T.-H. Ke, M. Ameys, J. Li, S. Steudel, J. Vandersteen, B. Cobb, F. Torricelli, A. van Roermund, E. Cantatore, Organic cmos line drivers on foil. J. Display Technol. 11(6), 564–569 (2015)

    Article  Google Scholar 

  132. J. Yuan, C. Svensson, High-speed cmos circuit technique. IEEE J. Solid-State Circuit. 24(1), 62–70 (1989)

    Article  Google Scholar 

  133. S. Jacob, S. Abdinia, M. Benwadih, J. Bablet, I. Chartier, R. Gwoziecki, E. Cantatore, A. Van Roermund, L. Maddiona, F. Tramontana et al., High performance printed n and p-type otfts enabling digital and analog complementary circuits on flexible plastic substrate. Solid-State Electron. 84, 167–178 (2013)

    Article  Google Scholar 

  134. R. Sharma, S. Verma, Comparitive analysis of static and dynamic cmos logic design, in IEEE International Conference on Computing and Communication Technologies (2011), pp. 231–234

    Google Scholar 

  135. E. Cantatore, E. Meijer, Transistor operation and circuit performance in organic electronics, in 2003 Proceedings of the 29th European Solid-State Circuits Conference, ESSCIRC’03 (IEEE, 2003), pp. 29–36

    Google Scholar 

  136. G. Gelinck, E. Van Veenendaal, R. Coehoorn, Dual-gate organic thin-film transistors. Appl. Phys. Lett. 87(7), 073–508 (2005)

    Google Scholar 

  137. K. Myny, M.J. Beenhakkers, N.A. van Aerle, G.H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, Unipolar organic transistor circuits made robust by dual-gate technology. IEEE J. Solid-State Circuits 46(5), 1223–1230 (2011)

    Article  Google Scholar 

  138. V. Fiore, P. Battiato, S. Abdinia, S. Jacobs, I. Chartier, R. Coppard, G. Klink, E. Cantatore, E. Ragonese, G. Palmisano, An integrated 13.56-mhz rfid tag in a printed organic complementary tft technology on flexible substrate. IEEE Tran. Circuits Syst. I: Regular Pap. 62(6), 1668–1677 (2015)

    Article  MathSciNet  Google Scholar 

  139. M. Guerin, E. Bergeret, E. Benevent, P. Pannier, A. Daami, S. Jacob, I. Chartier, R. Coppard, Design of organic complementary circuits for rfid tags application, in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference (2012)

    Google Scholar 

  140. P. Jakimovski, T. Riedel, A. Hadda, M. Beigl, Design of a printed organic rfid circuit with an integrated sensor for smart labels, in 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD) (IEEE, 2012), pp. 1–6

    Google Scholar 

  141. H. Marien, M.S. Steyaert, E. Van Veenendaal, P. Heremans, Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil. IEEE J. Solid-State Circuits 47(7), 1712–1720 (2012)

    Article  Google Scholar 

  142. H. Marien, M. Steyaert, N. van Aerle, P. Heremans, An analog organic first-order CT \(\Delta \) \(\Sigma \) ADC on a flexible plastic substrate with 26.5 db precision, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2010), pp. 36–137

    Google Scholar 

  143. R.Wanjau, D. Donaghy, M. Raja, Design of a high gain organic comparator for use in low-cost smart sensor systems, in 2015 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME) (IEEE, 2015), pp. 37–40

    Google Scholar 

  144. K. Myny, E. Van Veenendaal, G.H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil. IEEE J. Solid-State Circuits 47(1), 284–291 (2012)

    Article  Google Scholar 

  145. D.D. He, I.A. Nausieda, K.K. Ryu, A.I. Akinwande, V. Bulovic, C.G. Sodini, An integrated organic circuit array for flexible large-area temperature sensing (Institute of Electrical and Electronics Engineers, 2010)

    Google Scholar 

  146. D. Raiteri, P. van Lieshout, A. van Roermund, E. Cantatore, Positivefeedback level shifter logic for large-area electronics. IEEE J. Solid-State Circuits 49(2), 524–535 (2014)

    Article  Google Scholar 

  147. S. Abdinia, F. Torricelli, G. Maiellaro, R. Coppard, A. Daami, S. Jacob, L. Mariucci, G. Palmisano, E. Ragonese, F. Tramontana et al., Variation-based design of an am demodulator in a printed complementary organic technology. Org. Electron. 15(4), 904–912 (2014)

    Article  Google Scholar 

  148. S.G. Uppili, D.R. Allee, S.M. Venugopal, L.T. Clark, R. Shringarpure, Standard cell library and automated design flow for circuits on flexible substrates, in Flexible Electronics Displays Conference and Exhibition (2009)

    Google Scholar 

  149. T.C. Huang, K.T. Cheng, Design for low power and reliable flexible electronics: self-tunable cell-library design. J. Display Technol. 5(6), 206–215 (2009)

    Article  Google Scholar 

  150. K. Ishida, N. Masunaga, R. Takahashi, T. Sekitani, S. Shino, U. Zschieschang, H. Klauk, M. Takamiya, T. Someya, T. Sakurai, User customizable logic paper (uclp) with sea-of transmission-gates (sotg) of 2-v organic cmos and ink-jet printed interconnects. IEEE J. Solid-State Circuits 46(1), 285–292 (2011)

    Article  Google Scholar 

  151. M. Rockele, D.-V. Pham, J. Steiger, S. Botnaras, D. Weber, J. Vanfleteren, T. Sterken, D. Cuypers, S. Steudel, K. Myny et al., Solution-processed and low-temperature metal oxide n-channel thin-film transistors and low-voltage complementary circuitry on large-area flexible polyimide foil. J. Soc. Inf. Display 20(9), 499–507 (2012)

    Article  Google Scholar 

  152. A. Sou, S. Jung, E. Gili, V. Pecunia, J. Joimel, G. Fichet, H. Sirringhaus, Programmable logic circuits for functional integrated smart plastic systems. Org. Electron. 15(11), 3111–3119 (2014)

    Article  Google Scholar 

  153. P. Too, H. Vandekerckhove, G. Fichet, M.J. Harding, M.J. Banach, Recent advances in the reliability of otfts, in SPIE Organic Photonics+ Electronics, International Society for Optics and Photonics (2012), pp. 847 807–847 807

    Google Scholar 

  154. S. Burns, K. Reynolds, W. Reeves, M. Banach, T. Brown, K. Chalmers, N. Cousins, M. Etchells, C. Hayton, K. Jacobs et al., A scalable manufacturing process for flexible active-matrix e-paper displays. J. Soc. Inf. Display 13(7), 583–586 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mashayekhi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mashayekhi, M. (2018). State of the Art. In: Inkjet-Configurable Gate Array. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-72116-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72116-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72115-6

  • Online ISBN: 978-3-319-72116-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics