Skip to main content

Applications

  • Chapter
  • First Online:
Vibration Control of Active Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 246))

  • 3018 Accesses

Abstract

This chapter summarizes a few projects which have been conducted in the early days of the Active Structures Laboratory of ULB (mostly before 2002) in various fields including active damping, precision positioning, and vibroacoustics; all of them include numerical and experimental results. After a few words about digital control, the chapter begins with the active damping of a truss structure, followed by a six-axis piezoelectric Stewart platform that is proposed as generic damping interface (it can also be used for precision positioning). Next, the active damping of a piezoelectric plate is considered, with an experiment flown in 1995. It is followed by the active damping of a stiff beam using acceleration feedback and a proof-mass actuator. The next section, on HAC/LAC control, shows how embedding a collocated active damping loop in a non-collocated precision control may be effective in increasing the control bandwidth. The next section is devoted to the development of a sound radiation sensor for active structural acoustic control; the starting point is a discrete array of piezoelectric sensors; finally, a distributed sensor forming a porous electrode is developed successfully, all computations being confirmed by experiments. The chapter concludes with a short list of references and a set of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The implementation of the IFF controller presented here is that done at the time of this experiment. Other aspects of the control implementation, particularly concerning the recovery of the static stiffness of the uncontrolled structure, will be addressed in Sect. 15.5.

  2. 2.

    The electrode shape in Fig. 14.28 is nearly that obtained by cutting parabolic strips in two orthogonal directions.

References

Digital control

  1. Åström KJ, Wittenmark B (1990) Computer-controlled systems, theory and design, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  2. Elliott SJ (2001) Signal processing for active control. Academic Press, New York

    Google Scholar 

  3. Franklin GF, Powell JD (1980) Digital control of dynamic systems. Addison-Wesley, Reading

    Google Scholar 

  4. Hanselmann H (1987) Implementation of digital controllers - a survey. Automatica 23(1):7–32

    Article  MATH  Google Scholar 

  5. Jackson LB (1986) Digital filters and signal processing. Kluwer, Boston

    Google Scholar 

  6. Kuo BC (1977) Digital control systems. SRL Publishing Co., Champaign

    Google Scholar 

  7. Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

Active damping of a truss

  1. Abu-Hanieh A (2003) Active isolation and damping of vibrations via Stewart platform. Ph.D. thesis, Université Libre de Bruxelles, Active Structures Laboratory

    Google Scholar 

  2. Anderson EH, Moore DM, Fanson JL, Ealey MA (1990) Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures, SDM conference, AIAA paper 90-1085-CP

    Google Scholar 

  3. Chen GS, Lurie BJ, Wada BK (1989) Experimental studies of adaptive structures for precision performance. In: SDM Conference, AIAA paper 89-1327-CP

    Google Scholar 

  4. Geng Z, Haynes L (1994) Six degree of freedom active vibration isolation system using the Stewart platforms. IEEE Trans Control Syst Technol 2(1):45–53

    Article  Google Scholar 

  5. Fanson JL, Blackwood GH, Chen CC (1989) Active member control of precision structures. In: SDM conference, AIAA paper 89-1329-CP

    Google Scholar 

  6. Hyde TT, Anderson EH (1996) Actuator with built-in viscous damping for isolation and structural control. AIAA J 34(1):129–135

    Article  Google Scholar 

  7. Peterson LD, Allen JJ, Lauffer JP, Miller AK (1989) An experimental and analytical synthesis of controlled structure design. SDM conference, AIAA paper 89-1170-CP

    Google Scholar 

  8. Preumont A, Dufour JP, Malekian Ch (1992) Active damping by a local force feedback with piezoelectric actuators. AIAA J Guid Control Dyn 15(2):390–395

    Article  Google Scholar 

Active damping of a plate

  1. Dosch JJ, Inman DJ, Garcia E (1992) A self-sensing piezoelectric actuator for collocated control. J Intell Mater Syst Struct 3:166–185

    Article  Google Scholar 

  2. Fanson JL, Caughey TK (1990) Positive position feedback control for large space structures. AIAA J 28(4):717–724

    Article  Google Scholar 

  3. Loix N, Conde Reis A, Brazzale P, Dettman J, Preumont A (1997) CFIE: in-orbit active damping experiment using strain actuators, space microdynamics and accurate control symposium, Toulouse

    Google Scholar 

  4. Piefort V (2001a) Finite element modeling of piezoelectric active structures. Ph.D. thesis, Université Libre de Bruxelles, Active Structures Laboratory

    Google Scholar 

Active damping of a stiff beam

  1. Preumont A, Loix N, Malaise D, Lecrenier O (1993) Active damping of optical test benches with acceleration feedback. Mach Vib 2:119–124

    Google Scholar 

HAC/LAC

  1. Aubrun JN (1980) Theory of the control of structures by low-authority controllers. AIAA J Guid Control Dyn 3(5):444–451

    Article  MathSciNet  MATH  Google Scholar 

  2. Benhabib RJ, Iwens RP, Jackson RL (1981) Stability of large space structure control systems using positivity concepts. AIAA J Guid Control Dyn 4(5):487–494

    Article  MathSciNet  MATH  Google Scholar 

  3. Gupta NK (1980) Frequency-shaped cost functionals: extension of linear quadratic Gaussian methods. AIAA J Guid Control Dyn 3(6):529–535

    Article  Google Scholar 

  4. Kosut RL, Salzwedel H, Emami-Naeini A (1983) Robust control of flexible spacecraft. AIAA J Guid Control Dyn 6(2):104–111

    Article  MATH  Google Scholar 

  5. Mukhopadhyay V, Newsom JR (1984) A multiloop system stability margin study using matrix singular values. AIAA J Guid 7(5):582–587

    Article  MATH  Google Scholar 

  6. Parsons EK (1989) An experiment demonstrating pointing control on a flexible structure. IEEE Control Syst Mag 9:79–86

    Article  Google Scholar 

  7. Preumont A (1995) Active structures for vibration suppression and precision pointing. J Struct Control 2(1):49–63

    Article  Google Scholar 

Vibroacoustics

  1. de Man P, François A, Preumont A (2002) Vibroacoustic optimization of a baffled plate for robust feedback control. ASME J Vib Acoust 124:154–157

    Article  Google Scholar 

  2. Fahy F (1987) Sound and structural vibration. Academic Press, New York

    Google Scholar 

  3. François A, De Man P, Preumont A (2001) Piezoelectric array sensing of volume displacement: a hardware demonstration. J Sound Vib 244(3):395–405

    Article  Google Scholar 

  4. Gardonio P, Lee YS, Elliott SJ, Debost S (1999) Active control of sound transmission through a panel with a matched PVDF sensor and actuator pair, active 99. Fort Lauderdale, Fl

    Google Scholar 

  5. Johnson ME, Elliott SJ (1995) Active control of sound radiation using volume velocity cancellation. J Acoust Soc Am 98:2174–2186

    Article  Google Scholar 

  6. Piefort V (2001b) Finite element modeling of piezoelectric active structures. Ph.D. thesis, Université Libre de Bruxelles, Active Structures Laboratory

    Google Scholar 

  7. Rex J, Elliott SJ (1992) The QWSIS - a new sensor for structural radiation control, MOVIC-1. Yokohama

    Google Scholar 

  8. Preumont A, François A, de Man P, Piefort V (2003) Spatial filters in structural control. J Sound Vib 265:61–79

    Article  MathSciNet  MATH  Google Scholar 

  9. Preumont A, François A, de Man P, Loix N, Henrioulle K (2005) Distributed sensors with piezoelectric films in design of spatial filters for structural control. J Sound Vib 282(3–5):701–712

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Preumont .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Preumont, A. (2018). Applications. In: Vibration Control of Active Structures. Solid Mechanics and Its Applications, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-319-72296-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72296-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72295-5

  • Online ISBN: 978-3-319-72296-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics