Skip to main content

Passive Damping with Piezoelectric Transducers

  • Chapter
  • First Online:
Vibration Control of Active Structures

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 246))

  • 3039 Accesses

Abstract

This chapter analyzes the basic principle of passive damping with shunted piezoelectric transducers. Resistive shunting and inductive shunting are examined successively. The various ways of tuning the inductor (maximum stability and equal peak design) are carefully reviewed, and the robustness with respect to the shunt parameters is discussed. Next, the switch shunt is analyzed, leading to the technique known as synchronized switch damping on inductor (SSDI); the performances of the various shunting modes are compared. The chapter concludes with a short list of references and a set of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Comparing the two foregoing equations, one finds that the static capacitance reads \(C_{\text {stat}}=C(1-k^2)(1+\sum K_i^2)\).

  2. 2.

    This root locus will be met many times in the following chapters.

  3. 3.

    \(\omega _n^2=K_a/M(1-k^2)\).

  4. 4.

    The strain energy is proportional to the square of the displacement.

References

  1. Davis CL, Lesieutre GA (1995) A modal strain energy approach to the prediction of resistivity shunted piezoceramic damping. J Sound Vib 184(6):129–139

    Article  MATH  Google Scholar 

  2. de Marneffe B (2007) Active and passive vibration isolation and damping via shunted transducers. Ph.D. thesis, Université Libre de Bruxelles, Active Structures Laboratory

    Google Scholar 

  3. Ducarne J (2009) Modélisation et optimisation de dispositifs non-linéaires d’amortissement de structure par systémes piézoélectriques commutés. Ph.D. thesis, Conservatoire National des Arts et Métiers

    Google Scholar 

  4. Edberg DL, Bicos AS, Fechter JS (1991) On piezoelectric energy conversion for electronic passive damping enhancement. In: Proceedings of Damping’91, San Diego

    Google Scholar 

  5. Forward RL (1979) Electronic damping of vibrations in optical structures. Appl Opt 18(5):690–697

    Article  Google Scholar 

  6. Forward RL (1979) Electromechanical transducer-coupled mechanical structure with negative capacitance compensation circuit. US Patent 4,158,787

    Google Scholar 

  7. Guyomar D, Richard C (2005) Non-linear and hysteretic processing of piezoelement: application to vibration control, wave control and energy harvesting. Int J Appl Electromagn Mech 21:193–207

    Google Scholar 

  8. Guyomar D, Richard C, Mohammadi S (2007) Semipassive random vibration control based on statistics. J Sound Vib 307:818–833

    Article  Google Scholar 

  9. Hagood NW, von Flotow A (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146(2):243–268

    Article  Google Scholar 

  10. Hollkamp JJ (1994) Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J Intell Mater Syst Struct 5:49–57

    Article  Google Scholar 

  11. Lallart M, Lefeuvre E, Richard C (2007) Self-powered circuit for broadband, multimodal piezoelectric vibration control. Sens Actuators A 143:377–382

    Article  Google Scholar 

  12. Moheimani SOR (2003) A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. IEEE Trans Control Syst Technol 11(4):482–494

    Article  Google Scholar 

  13. Mokrani B, Rodrigues G, Burda I, Bastaits R, Preumont A (2012) Synchronized switch damping on inductor and negative capacitance. J Intell Mater Syst Struct 3:2065–2075

    Article  Google Scholar 

  14. Mokrani B, Burda I, Preumont A (2015) Adaptive inductor for vibration damping in presence of uncertainty, 7th ECCOMAS thematic conference on smart structures and materials, Azores

    Google Scholar 

  15. Neubauer M, Han X, Wallascheck J (2013) On the maximum damping performance of piezoelectric switching techniques. J Intell Mater Syst Struct 24(6):717–728

    Article  Google Scholar 

  16. Niederberger D (2005) Smart damping materials using Shunt control. Ph.D. thesis, Swiss Federal Institute of Technology - ETHZ

    Google Scholar 

  17. Preumont A (2006) Mechatronics, dynamics of electromechanical and piezoelectric systems. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Preumont .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Preumont, A. (2018). Passive Damping with Piezoelectric Transducers. In: Vibration Control of Active Structures. Solid Mechanics and Its Applications, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-319-72296-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72296-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72295-5

  • Online ISBN: 978-3-319-72296-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics