Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 397 Accesses

Abstract

In this chapter, the characteristics of acoustic metamaterials in manipulation of elastodynamic and acoustic waves is explained. Acoustic bandgaps are introduced and the role of topology optimisation for enhancing the bandgap efficiency of PhCrs is discussed. Application of PhPs in manipulation of guided waves in thin-walled structures for design of low loss vibroacoustic devices and structural health monitoring is explained. Finally, the research scope targeting topology optimisation of PhPs is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assouar, M. B., Senesi, M., Oudich, M., Ruzzene, M., & Hou, Z. (2012). Broadband plate-type acoustic metamaterial for low-frequency sound attenuation. Applied Physics Letters, 101(17), 173505.

    Article  Google Scholar 

  • Deymier, P. (2011). Acoustic metamaterials and phononic crystals. Berlin: Springer.

    Google Scholar 

  • Halkjær, S., Sigmund, O., & Jensen, J. S. (2006). Maximizing band gaps in plate structures. Structural and Multidisciplinary Optimization, 32(4), 263–275.

    Article  Google Scholar 

  • Hedayatrasa, S., Abhary, K., & Uddin, M. (2016). On topology optimization of acoustic metamaterial lattices for locally resonant bandgaps of flexural waves. The 2nd Australasian Acoustical Societies’ Conference.

    Google Scholar 

  • Hsu, J.-C., & Wu, T.-T. (2007, May 14). Lamb waves in binary locally resonant phononic plates with two-dimensional lattices, Applied Physics Letters, 90(20), pp. 201904–201903.

    Google Scholar 

  • Kundu, T. (2004). Ultrasonic nondestructive evaluation—Engineering and biological material characterization. Boca Raton: CRC Press.

    Google Scholar 

  • Li, J., & Chan, C. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5), 055602.

    Article  Google Scholar 

  • Lin, C.-M., Hsu, J.-C., Senesky, D. G., & Pisano, A. P. (2014) Anchor loss reduction in ALN Lamb wave resonators using phononic crystal strip tethers. In Frequency Control Symposium (FCS), 2014 IEEE International, pp. 1–5.

    Google Scholar 

  • Lin, S.-C. S., Huang, T. J., Sun, J.-H., & Wu, T.-T. (2009). Gradient-index phononic crystals. Physical Review B, 79(9), 094302.

    Article  Google Scholar 

  • Mohammadi, S. (2010) Phononic band gap micro/nano-mechanical structures for communications and sensing applications. Georgia Institute of Technology.

    Google Scholar 

  • Olsson Iii, R. H., & El-Kady, I. F. (2009). Microfabricated phononic crystal devices and applications. Measurement Science & Technology, 20(1), 012002.

    Article  Google Scholar 

  • Su, Z., & Ye, L. (2009). Identification of damage using lamb waves: From fundamentals to applications. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Veidt, M., Ng, C.-T., Hames, S., & Wattinger, T. (2008). Imaging laminar damage in plates using Lamb wave beamforming. Advanced Materials Research, 47, 666–669.

    Article  Google Scholar 

  • Wang, P., Casadei, F., Shan, S., Weaver, J. C., & Bertoldi, K. (2014). Harnessing buckling to design tunable locally resonant acoustic metamaterials. Physical Review Letters, 113(1), 014301.

    Article  Google Scholar 

  • Wang, P., Shim, J., & Bertoldi, K. (2013). Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Physical Review B, 88(1), 014304.

    Article  Google Scholar 

  • Wang, G., Wen, X., Wen, J., Shao, L., & Liu, Y. (2004). Two-dimensional locally resonant phononic crystals with binary structures. Physical Review Letters, 93(15), 154302.

    Article  Google Scholar 

  • Zhu, H., & Semperlotti, F. (2013). Metamaterial based embedded acoustic filters for structural applications. AIP Advances, 3(9), 092121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Hedayatrasa .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hedayatrasa, S. (2018). Background and Research Scope. In: Design Optimisation and Validation of Phononic Crystal Plates for Manipulation of Elastodynamic Guided Waves. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-72959-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72959-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72958-9

  • Online ISBN: 978-3-319-72959-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics