Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 396 Accesses

Abstract

The implemented optimisation framework is first discussed in this chapter. Optimisation algorithms and their characteristics are explained and compared. The advantages of GA for optimisation of PhCrs and in particular for proposed research problem are argued. Then the topology mapping and definition of binary design variables for desired 1D and 2D PhPs are presented. Finally, the FEM formulation and relevant periodic boundary conditions for modal band analysis of the PhP unit-cell are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bilal, O. R., & Hussein, M. I. (2011). Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Physical Review E, 84(6), 065701.

    Article  Google Scholar 

  • Cavazzuti, M. (2013). Optimization methods: From theory to design scientific and technological aspects in mechanics. Berlin: Springer.

    Book  MATH  Google Scholar 

  • de Borst, R., Crisfield, M. A., Remmers, J. J. C., & Verhoosel, C. V. (2012). Non-linear finite element analysis of solids and structures (2nd ed.). Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Fan Li, Y., Huang, X., Meng, F., & Zhou, S. (2016). Evolutionary topological design for phononic band gap crystals. Structural and Multidisciplinary Optimization, 1–23.

    Google Scholar 

  • Gao, H., Matsumoto, T., Takahashi, T., & Isakari, H. (2013). Analysis of band structure for 2D acoustic phononic structure by BEM and the block SS method. CMES—Computer Modeling Engineering & Sciences, 90, 283–301.

    MathSciNet  MATH  Google Scholar 

  • Gazonas, G. A., Weile, D. S., Wildman, R., & Mohan, A. (2006). Genetic algorithm optimization of phononic bandgap structures. International Journal of Solids and Structures, 43(18–19), 5851–5866.

    Article  MATH  Google Scholar 

  • Guest, J. K., Prévost, J., & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Guest, J. K., & Smith Genut, L. C. (2010). Reducing dimensionality in topology optimization using adaptive design variable fields. International Journal for Numerical Methods in Engineering, 81(8), 1019–1045.

    MATH  Google Scholar 

  • Huang, X., & Xie, M. (2010). Evolutionary topology optimization of continuum structures: Methods and applications. Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Hussein, M. I., Hamza, K., Hulbert, G. M., & Saitou, K. (2007, November). Optimal synthesis of 2D phononic crystals for broadband frequency isolation. Waves in Random and Complex Media, 17(4), 491–510.

    Google Scholar 

  • Hussein, M. I., Hamza, K., Hulbert, G. M., Scott, R. A., & Saitou, K. (2006, January 1). Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Structural and Multidisciplinary Optimization, 31(1), 60–75.

    Google Scholar 

  • Kafesaki, M., & Economou, E. N. (1999). Multiple-scattering theory for three-dimensional periodic acoustic composites. Physical Review B, 60(17), 11993.

    Article  Google Scholar 

  • Kao, C., Osher, S., & Yablonovitch, E. (2005). Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Applied Physics B, 81(2–3), 235–244.

    Article  Google Scholar 

  • Kittel, C. (1986). Introduction to solid state physics. New York: Wiley.

    MATH  Google Scholar 

  • Kundu, T. (2004). Ultrasonic nondestructive evaluation—Engineering and biological material characterization. Boca Raton: CRC Press.

    Google Scholar 

  • Liu, Z.-f., Wu, B., & He, C.-f. (2014). Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and FPWE. Waves in Random and Complex Media, no. ahead-of-print, pp. 1–20.

    Google Scholar 

  • Meng, F., Huang, X., & Jia, B. (2015). Bi-directional evolutionary optimization for photonic band gap structures. Journal of Computational Physics, 302, 393–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Radman, A. (2013). Bi-directional evolutionary structural optimization (BESO) for topology optimization of material’s microstructure. RMIT University.

    Google Scholar 

  • Rennera, G., & Ekart, A. (2003). Genetic algorithms in computer-aided design. Computer-Aided Design, 35, 709–726.

    Article  Google Scholar 

  • Sigmund, O., & Jensen, J. S. (2003). Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society of London A, 361, 1001–1019.

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund, O. (2011). On the usefulness of non-gradient approaches in topology optimization. Structural and Multidisciplinary Optimization, 43(5), 589–596.

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg, K. (1987). The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24(2), 359–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai, S. W. (1992). Theory of composites design, Think composites Dayton.

    Google Scholar 

  • Wang, M. Y., Wang, X., & Guo, D. (2003, January 3). A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1–2), 227–246.

    Google Scholar 

  • Wang, Y., Gao, J., Luo, Z., Brown, T., & Zhang, N. (2016a). Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials. Engineering Optimization, 1–21.

    Google Scholar 

  • Wang, Y., Luo, Z., Zhang, N., & Wu, T. (2016b). Topological design for mechanical metamaterials using a multiphase level set method. Structural and Multidisciplinary Optimization, 1–16.

    Google Scholar 

  • Yan, Z.-Z., & Wang, Y.-S. (2006). Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Physical Review B, 74(22), 224303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Hedayatrasa .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hedayatrasa, S. (2018). Optimisation Framework and Fundamental Formulation. In: Design Optimisation and Validation of Phononic Crystal Plates for Manipulation of Elastodynamic Guided Waves. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-72959-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72959-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72958-9

  • Online ISBN: 978-3-319-72959-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics