Skip to main content

Stabbing Line Segments with Disks: Complexity and Approximation Algorithms

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10716))

Abstract

Computational complexity and approximation algorithms are reported for a problem of stabbing a set of straight line segments with the least cardinality set of disks of fixed radii \(r>0\) where the set of segments forms a straight line drawing \(G=(V,E)\) of a planar graph without edge crossings. Close geometric problems arise in network security applications. We give strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs and other subgraphs (which are often used in network design) for \(r\in [d_{\min },\eta d_{\max }]\) and some constant \(\eta \) where \(d_{\max }\) and \(d_{\min }\) are Euclidean lengths of the longest and shortest graph edges respectively. Fast \(O(|E|\log |E|)\)-time O(1)-approximation algorithm is proposed within the class of straight line drawings of planar graphs for which the inequality \(r\ge \eta d_{\max }\) holds uniformly for some constant \(\eta >0,\) i.e. when lengths of edges of G are uniformly bounded from above by some linear function of r.

This work was supported by Russian Science Foundation, project 14-11-00109.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A graph without loops and parallel edges.

  2. 2.

    \({\mathrm {int}}\,N\) is the set of interior points of N.

  3. 3.

    When U coincides with some prescribed finite set.

  4. 4.

    \(\mathrm{{bd}}\,T\) denotes the set of boundary points of T.

References

  1. Agarwal, P.K., Efrat, A., Ganjugunte, S.K., Hay, D., Sankararaman, S., Zussman, G.: The resilience of WDM networks to probabilistic geographical failures. IEEE/ACM Trans. Netw. 21(5), 1525–1538 (2013)

    Article  Google Scholar 

  2. Arkin, E.M., Anta, A.F., Mitchell, J.S., Mosteiro, M.A.: Probabilistic bounds on the length of a longest edge in Delaunay graphs of random points in \(d\) dimensions. Comput. Geom. 48(2), 134–146 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhattacharya, B.K., Jadhav, S., Mukhopadhyay, A., Robert, J.M.: Optimal algorithms for some intersection radius problems. Computing 52(3), 269–279 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., De Carufel, J.-L., Durocher, S., Taslakian, P.: Competitive online routing on delaunay triangulations. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 98–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_9

    Chapter  Google Scholar 

  5. Bose, P., Kirkpatrick, D.G., Li, Z.: Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces. Comput. Geom. 26(3), 209–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom. 47(2), 112–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Efrat, A., Katz, M.J., Nielsen, F., Sharir, M.: Dynamic data structures for fat objects and their applications. Comput. Geom. 15, 215–227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gonzalez, T.F.: Covering a set of points in multidimensional space. Inf. Process. Lett. 40(4), 181–188 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hasegawa, T., Masuyama, S., Ibaraki, T.: Computational complexity of the \(m\)-center problems on the plane. Trans. Inst. Electron. Commun. Eng. Japan Sect. E 64(2), 57–64 (1981)

    Google Scholar 

  10. Marx, D.: Efficient approximation schemes for geometric problems? In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_41

    Chapter  Google Scholar 

  11. Onoyama, T., Sibuya, M., Tanaka, H.: Limit distribution of the minimum distance between independent and identically distributed d-dimensional random variables. In: de Oliveira, J.T. (ed.) Statistical Extremes and Applications. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 131, pp. 549–562. Springer, Dordrecht (1984). https://doi.org/10.1007/978-94-017-3069-3_42

    Chapter  Google Scholar 

  12. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  13. Har-Peled, S., Quanrud, K.: Approximation algorithms for polynomial-expansion and low-density graphs. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 717–728. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_60

    Chapter  Google Scholar 

  14. Stojmenovic, I., Urrutia, J., Bose, P., Morin, P.: Routing with guaranteed delivery in ad hoc wireless networks. Wirel. Netw. 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  15. Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circ. Syst. 36, 1230–1234 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Kobylkin .

Editor information

Editors and Affiliations

A Proof of the Lemma 1

A Proof of the Lemma 1

Proof

Let \(u=(x,y),\,v=(x_1,y_1)\) and \(w=(x_2,y_2)\) be distinct points of X. Consider an arbitrary radius r circle (out of two circles) which passes through v and w, and denote its center by O. A lower bound is obtained below for the distance \(\pi =\pi (u;v,w)\) from that circle to the point \(u\notin C(v,w).\)

Let \(\varDelta =|v-w|_2,\) \(\lambda =\sqrt{r^2-\frac{ \varDelta ^2}{ 4}}\), \(a=(u-v,u-w)\) and \(b=(u-v,(v-w)^{\perp })\), where \((v-w)^{\perp }=\pm (y_1-y_2,-x_1+x_2)\). The distance \(\pi >0\) can be written in the form:

$$\begin{aligned} \pi =\pi (u;v,w)=\left| \left| \frac{v+w}{2}-\lambda \frac{(v-w)^{\perp }}{|v-w|_2}-u\right| _2-r\right| =\left| \frac{a+\frac{ {2\lambda b}}{ \varDelta }}{\sqrt{a+\frac{ {2\lambda b}}{ \varDelta }+r^2}+r}\right| . \end{aligned}$$

Without loss of generality it is assumed that u is in the 2r radius disk centered at O. Indeed, we get \(\pi \ge r\ge \frac{1}{r}\) otherwise. Let us bound denominator of the fraction \(\pi ,\) taking into account that \(\varDelta \le 2r,\) \(|u-v|_2\le |u-O|_2+|O-v|_2\le 3r\) and \(|b|/\varDelta \le 3r:\)

$$\begin{aligned} \sqrt{a+\frac{2\lambda b}{\varDelta }+r^2}+r\le 5r. \end{aligned}$$

As points of X have integer coordinates, a and b are integers. For \(\varDelta ^2=4r^2\) we get \(\pi \ge \frac{ 1}{ 5r}\). When \(\varDelta ^2\le 4r^2-1,\) it is enough to prove the inequality

$$\begin{aligned} \left| a+\frac{2\lambda b}{\varDelta }\right| \ge \frac{1}{96r^4}. \end{aligned}$$
(1)

Indeed, again, combining this bound with the aforementioned upper bound for denominator of the fraction \(\pi ,\) we get \(\pi \ge \frac{1}{480r^5}\).

For integer \(\frac{2\lambda b}{\varDelta }\) the left-hand side of the inequality (1) is at least 1. Thus, it remains for us to prove the inequality (1) for the case where \(\frac{2\lambda b}{\varDelta }\notin \mathbb {Z}\). Suppose that \(q=\left\{ \left| \frac{2\lambda b}{\varDelta }\right| \right\} >0\) and \(k=\left[ \left| \frac{2\lambda b}{\varDelta }\right| \right] ,\) where \(\{\cdot \}\) and \([\cdot ]\) denote fractional and integer part of real number respectively. In fact, the term \(\min \{q,1-q\}\) can be bounded from below. Let us start estimating with q. First, it is assumed that \(\gamma =\frac{ 4r^2b^2}{ \varDelta ^2}\in ~\mathbb {Z}.\) We have \(k^2<\frac{ 4\lambda ^2b^2}{ \varDelta ^2}<(k+1)^2.\) As \(q>0,\) we get \(q\ge \left\{ \sqrt{k^2+1}\right\} .\) Due to concavity of the square root we have

$$\begin{aligned} \left\{ \sqrt{k^2+1}\right\} =\left\{ \sqrt{\frac{2k\cdot k^2}{2k+1}+ \frac{(k+1)^2}{2k+1}}\right\} \ge \left\{ k+\frac{1}{2k+1}\right\} =\frac{1}{2k+1} \end{aligned}$$
$$\begin{aligned} \ge \frac{1}{\frac{ 4\lambda |b|}{ \varDelta }+1} \ge \frac{ 1}{ 13r^2}. \end{aligned}$$

Now the case is considered where \(\gamma \notin \mathbb {Z}\). As \(2kq+q^2\ge \{2kq+q^2\}=\{\gamma \}\), we have that

$$\begin{aligned} q\ge \sqrt{k^2+\{\gamma \}}-k\ge \frac{\{\gamma \}}{\sqrt{k^2+\{\gamma \}}+k} \ge \frac{\frac{ 1}{ \varDelta ^2}}{\frac{ 4r|b|}{ \varDelta }} \ge \frac{1}{12r^2\varDelta ^2}\ge \frac{1}{48r^4}. \end{aligned}$$

Let us get a lower bound for \(1-q\). Again, assume that \(\gamma \in \mathbb {Z}\). Arguing analogously, we arrive at the bound

$$\begin{aligned} 2k(1-q)+(1-q)^2\ge \{(k+1-q)^2\} =\left\{ (k+1)^2-\frac{4\lambda ^2b^2}{\varDelta ^2}-2q(1-q)\right\} \ge \frac{1}{2}. \end{aligned}$$

Resolving the quadratic inequality with respect to \(1-q\), we get:

$$\begin{aligned} 1-q\ge \sqrt{k^2+\frac{1}{2}}-k =\frac{\frac{1}{2}}{\sqrt{k^2+\frac{1}{2}}+k} \ge \frac{1}{\frac{ 8r|b|}{ \varDelta }}\ge \frac{1}{24r^2}. \end{aligned}$$

Now let \(\gamma \notin \mathbb {Z}\). Let us consider the subcase, where \(\{\gamma \}+2q(1-q)>1\). We get

$$\begin{aligned} \left\{ (k+1)^2-\frac{4\lambda ^2b^2}{\varDelta ^2}-2q(1-q)\right\} \ge 1-\{\gamma \}\ge \frac{1}{\varDelta ^2}. \end{aligned}$$

Resolving the corresponding inequality with respect to \(1-q\), we arrive at the analogous lower bound \(1-q\ge \frac{1}{48r^4}\).

Now we are to address the case where \(\{\gamma \}+2q(1-q)<1\). Obviously,

$$\begin{aligned} \left\{ (k+1)^2-\frac{4\lambda ^2b^2}{\varDelta ^2}-2q(1-q)\right\} =1-\{\gamma \}-2q(1-q). \end{aligned}$$

For \(1-q<\frac{ 1}{ 4\varDelta ^2}\) we have \(1-\{\gamma \}-2q(1-q) \ge \frac{1}{\varDelta ^2}-\frac{1}{2\varDelta ^2} =\frac{ 1}{ 2\varDelta ^2}.\) Arguing analogously, we obtain the following bound \(1-q\ge \frac{ 1}{ 96r^4}\); otherwise, we get \(1-q\ge \frac{ 1}{ 4\varDelta ^2}\ge \frac{ 1}{ 16r^2}\).

For \(\{\gamma \}+2q(1-q)=1\) we have:

$$\begin{aligned} 1-q=\frac{1-\{\gamma \}}{ 2q} \ge \frac{1-\{\gamma \}}{2}\ge \frac{1}{2\varDelta ^2}\ge \frac{1}{8r^2}. \end{aligned}$$

Finally, we arrive at the claimed bound:

$$\begin{aligned} \min \{q,1-q\}\ge \frac{1}{96r^4}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobylkin, K. (2018). Stabbing Line Segments with Disks: Complexity and Approximation Algorithms. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2017. Lecture Notes in Computer Science(), vol 10716. Springer, Cham. https://doi.org/10.1007/978-3-319-73013-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73013-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73012-7

  • Online ISBN: 978-3-319-73013-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics