Skip to main content

Parametric Representations and Boundary Fixed Points of Univalent Self-Maps of the Unit Disk

  • Chapter
  • First Online:
Geometric Function Theory in Higher Dimension

Part of the book series: Springer INdAM Series ((SINDAMS,volume 26))

Abstract

A classical result in the theory of Loewner’s parametric representation states that the semigroup \({\mathfrak U\hskip .03em}_*\) of all conformal self-maps ϕ of the unit disk \(\mathbb {D}\) normalized by ϕ(0) = 0 and ϕ′(0) > 0 can be obtained as the reachable set of the Loewner–Kufarev control system

$$\displaystyle \frac {\mathrm {d} w_t}{\mathrm {d} t}=G_t\circ w_t,\quad t\geqslant 0,\qquad w_0={\mathsf {id}}_{\mathbb {D}}, $$

where the control functions \(t\mapsto G_t\in {\mathsf {Hol}}(\mathbb {D},\mathbb {C})\) form a certain convex cone. Here we extend this result to the semigroup \({\mathfrak U\hskip .08em}[\,F]\) consisting of all conformal \(\phi :\mathbb {D}\to \mathbb {D}\) whose set of boundary regular fixed points contains a given finite set \(F\subset {\partial \mathbb {D}}\) and to its subsemigroup \({\mathfrak U\hskip .1em}_{\tau }\hskip -.09em[\,F]\) formed by \({\mathsf {id}}_{\mathbb {D}}\) and all \(\phi \in {\mathfrak U\hskip .08em}[\,F]\setminus \{{\mathsf {id}}_{\mathbb {D}}\}\) with the prescribed boundary Denjoy–Wolff point \(\tau \in {\partial \mathbb {D}}\setminus F\). This completes the study launched in Gumenyuk, P. (Constr. Approx. 46 (2017), 435–458, https://doi.org/10.1007/s00365-017-9376-4), where the case of interior Denjoy–Wolff point \(\tau \in \mathbb {D}\) was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, M.: Iteration theory of holomorphic maps on taut manifolds. Research and Lecture Notes in Mathematics. Complex Analysis and Geometry. Mediterranean, Rende (1989)

    Google Scholar 

  2. Aleksandrov, I.A.: Parametric continuations in the theory of univalent functions (Russian). Izdat. Nauka, Moscow (1976). MR0480952

    Google Scholar 

  3. Anderson, J.M., Vasil’ev, A.: Lower Schwarz-Pick estimates and angular derivatives. Ann. Acad. Sci. Fenn. Math. 33(1), 101–110 (2008). MR2386840

    Google Scholar 

  4. Arosio, L., Bracci, F., Wold, E.F.: Solving the Loewner PDE in complete hyperbolic starlike domains of \(\mathbb {C}^N\). Adv. Math. 242, 209–216 (2013). MR3055993

    Google Scholar 

  5. Berkson, E., Porta, H.: Semigroups of holomorphic functions and composition operators. Michigan Math. J. 25, 101–115 (1978)

    Google Scholar 

  6. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997). MR1477662

    Google Scholar 

  7. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Aleksandrov-Clark measures and semigroups of analytic functions in the unit disc. Ann. Acad. Sci. Fenn. Math. 33(1), 231–240 (2008). MR2386848

    Google Scholar 

  8. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Evolution families and the Loewner equation II: complex hyperbolic manifolds. Math. Ann. 344(4), 947–962 (2009)

    Google Scholar 

  9. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Evolution families and the Loewner equation I: the unit disc. J. Reine Angew. Math. (Crelle’s J.) 672, 1–37 (2012)

    Google Scholar 

  10. Bracci, F., Contreras, M.D., Díaz-Madrigal, S., Vasil’ev, A.: Classical and stochastic Löwner-Kufarev equations. In: Harmonic and Complex Analysis and Its Applications, pp. 39–134. Trends in Mathematics, Birkhäuser, Cham (2014). MR3203100

    Google Scholar 

  11. Bracci, F., Contreras, M.D., Díaz-Madrigal, S., Gumenyuk, P.: Boundary regular fixed points in Loewner theory. Ann. Mat. Pura Appl. (4) 194(1), 221–245 (2015)

    Google Scholar 

  12. Contreras, M.D.: Geometry behind chordal Loewner chains. Complex Anal. Oper. Theory 4(3), 541–587 (2010). MR2719792

    Google Scholar 

  13. Contreras, M.D., Díaz-Madrigal, S.: Analytic flows in the unit disk: angular derivatives and boundary fixed points. Pac. J. Math. 222, 253–286 (2005)

    Article  MATH  Google Scholar 

  14. Contreras, M.D., Díaz-Madrigal, S., Pommerenke, C.: Fixed points and boundary behaviour of the Koenigs function. Ann. Acad. Sci. Fenn. Math. 29(2), 471–488 (2004). MR2097244

    Google Scholar 

  15. Contreras, M.D., Díaz-Madrigal, S., Pommerenke, C.: On boundary critical points for semigroups of analytic functions. Math. Scand. 98(1), 125–142 (2006). MR2221548

    Google Scholar 

  16. Contreras, M.D., Díaz-Madrigal, S., Gumenyuk, P.: Loewner chains in the unit disk. Rev. Mat. Iberoam. 26, 975–1012 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cowen, C.C., Pommerenke, C.: Inequalities for the angular derivative of an analytic function in the unit disk. J. Lond. Math. Soc. (2) 26(2), 271–289 (1982). MR0675170

    Google Scholar 

  18. de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154(1-2), 137–152 (1985). MR0772434

    Google Scholar 

  19. Elin, M., Goryainov, V., Reich, S., Shoikhet, D.: Fractional iteration and functional equations for functions analytic in the unit disk. Comput. Methods Funct. Theory 2(2), 353–366 (2002), [On table of contents: 2004]. MR2038126

    Google Scholar 

  20. Frolova, A., Levenshtein, M., Shoikhet, D., Vasil’ev, A.: Boundary distortion estimates for holomorphic maps. Complex Anal. Oper. Theory 8(5), 1129–1149 (2014). MR3208806

    Google Scholar 

  21. Goryainov, V.V.: Semigroups of conformal mappings. Mat. Sb. (N.S.) 129(171)(4), 451–472, (1986) (Russian); Translation in Math. USSR Sbornik 57, 463–483 (1987)

    Google Scholar 

  22. Goryainov, V.V.: Fractional iterates of functions that are analytic in the unit disk with given fixed points. Mat. Sb. 182(9), 1281–1299 (1991); Translation in Math. USSR-Sb. 74(1), 29–46 (1993). MR1133569

    Google Scholar 

  23. Goryainov, V.V., Evolution families of analytic functions and time-inhomogeneous Markov branching processes. Dokl. Akad. Nauk 347(6), 729–731 (1996); Translation in Dokl. Math. 53(2), 256–258 (1996)

    Google Scholar 

  24. Goryainov, V.V.: Semigroups of analytic functions in analysis and applications. Uspekhi Mat. Nauk 676(408), 5–52 (2012); Translation in Russian Math. Surveys 67(6), 975–1021 (2012)

    Google Scholar 

  25. Goryainov, V.V.: Evolution families of conformal mappings with fixed points. (Russian. English summary). Zírnik Prats’ Instytutu Matematyky NAN Ukrayiny. National Academy of Sciences of Ukraine (ISSN 1815-2910) 10(4-5), 424–431 (2013). Zbl 1289.30024

    Google Scholar 

  26. Goryainov, V.V.: Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation. Mat. Sb. 206(1), 39–68 (2015); Translation in Sb. Math. 206(1-2), 33–60 (2015)

    Google Scholar 

  27. Goryainov, V.V., Ba, I.: Semigroups of conformal mappings of the upper half-plane into itself with hydrodynamic normalization at infinity. Ukr. Math. J. 44, 1209–1217 (1992)

    Article  MathSciNet  Google Scholar 

  28. Goryainov, V.V., Kudryavtseva, O.S.: One-parameter semigroups of analytic functions, fixed points and the Koenigs function. Mat. Sb. 202(7), 43–74 (2011) (Russian); Translation in Sbornik: Mathematics 202(7-8), 971–1000 (2011)

    Google Scholar 

  29. Gumenyuk, P.: Parametric representation of univalent functions with boundary regular fixed points. Constr. Approx. 46, 435–458 (2017). https://doi.org/10.1007/s00365-017-9376-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Koch, J., Schleißinger, S.: Value ranges of univalent self-mappings of the unit disc. J. Math. Anal. Appl. 433(2), 1772–1789 (2016). MR3398791

    Google Scholar 

  31. Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 89, 103–121 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  32. Loewner, C.: On totally positive matrices. Math. Z. 63, 338–340 (1955). MR0073657

    MathSciNet  MATH  Google Scholar 

  33. Loewner, C.: Seminars on Analytic Functions, vol. 1. Institute for Advanced Study, Princeton, NJ (1957). Available at http://babel.hathitrust.org

    Google Scholar 

  34. Loewner, C.: On generation of monotonic transformations of higher order by infinitesimal transformations. J. Anal. Math. 11, 189–206 (1963). MR0214711

    MathSciNet  MATH  Google Scholar 

  35. Poggi-Corradini, P.: Canonical conjugations at fixed points other than the Denjoy-Wolff point. Ann. Acad. Sci. Fenn. Math. 25(2), 487–499 (2000). MR1762433

    Google Scholar 

  36. Pommerenke, Ch.: Univalent functions. With a chapter on quadratic differentials by Gerd Jensen. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  37. Pommerenke, Ch.: Boundary Behaviour of Conformal Mappings. Springer, New York (1992)

    Book  MATH  Google Scholar 

  38. Pommerenke, C., Vasil’ev, A.: Angular derivatives of bounded univalent functions and extremal partitions of the unit disk. Pac. J. Math. 206(2), 425–450 (2002). MR1926785 (2003i:30024)

    Google Scholar 

  39. Prokhorov, D., Samsonova, K.: Value range of solutions to the chordal Loewner equation. J. Math. Anal. Appl. 428(2) (2015). MR3334955

    Article  MathSciNet  MATH  Google Scholar 

  40. Roth, O., Schleißinger, S.: Rogosinski’s lemma for univalent functions, hyperbolic Archimedean spirals and the Loewner equation. Bull. Lond. Math. Soc. 46(5), 1099–1109 (2014). MR3262210

    Google Scholar 

  41. Sarason, D.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10. Wiley, New York (1994). MR1289670

    Google Scholar 

  42. Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author was partially supported by Ministerio de Economía y Competitividad (Spain) project MTM2015-63699-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Gumenyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gumenyuk, P. (2017). Parametric Representations and Boundary Fixed Points of Univalent Self-Maps of the Unit Disk. In: Bracci, F. (eds) Geometric Function Theory in Higher Dimension. Springer INdAM Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-73126-1_6

Download citation

Publish with us

Policies and ethics