Skip to main content

The Use of Amphipols for Electron Microscopy

  • Chapter
  • First Online:
Membrane Proteins in Aqueous Solutions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Summary

Electron microscopy is, to date, the field of structural biology to which amphipols have contributed most, to the point that testing amphipols has become a common practice at the onset of any single-particle high-resolution study of a membrane protein (MP) by electron cryomicroscopy (cryo-EM). Yet, few methodological studies have been published. In many cases, it has been shown that the use of amphipols facilitates cryo-EM studies as compared to detergent solutions and results in better data, but the origins of this improvement seem to be multiple and have not all been sorted out. Mechanisms that have some degree of credibility include (i) biochemical stabilization and, at least in some cases, reduction of the variability of the images of the target MP, presumably due to limitation of its dynamics; (ii) improved contrast, due to the absence or near-absence of free surfactant in the solution; and (iii) better spread of the particles in the water film stretched over the holes in the supporting carbon film, probably related to surface tension issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyrathne, P.D., Grigorieff, N. (2017) Expression, purification, and contaminant detection for structural studies of Ralstonia metallidurance ClC protein rm1. PLoS One 12:e0180163.

    Article  Google Scholar 

  • Agard, D.A., Cheng, Y., Glaeser, R.M., Subramaniam, S. (2014) Single-particle cryo-electron microscopy (cryo-EM): progress, challenges, and perspectives for future improvement. Adv. Imaging Electron Phys. 185:113–137.

    Article  Google Scholar 

  • Agosto, M.A., Zhang, Z., He, F., Anastassov, I.A., Wright, S.J., McGehee, J., Wensel, T.G. (2014) Oligomeric state of purified TRPM1, a protein essential for dim light vision. J. Biol. Chem. 289:27019–27033.

    Article  Google Scholar 

  • Allegretti, M., Mills, D.J., McMullan, G., Kühlbrandt, W., Vonck, J. (2014) Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3:e01963.

    Article  Google Scholar 

  • Althoff, T. (2011) Strukturelle Untersuchungen am Superkomplex I1III2IV1 der Atmungskette mittels Kryoelektronenmikroskopie, Fachbereich Biochemie, Chemie und Pharmazie. Johann Wolfgang Goethe-Universität, Frankfurt-am-Main, 248 p.

    Google Scholar 

  • Althoff, T., Mills, D.J., Popot, J.-L., Kühlbrandt, W. (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30:4652–4664.

    Article  Google Scholar 

  • Amunts, A., Brown, A., Bai, X.-C., Llácer, J.L., Hussain, T., Emsley, P., Long, F., Murshudov, G., Scheres, S.H.W., Ramakrishnan, V. (2014) Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485–1489.

    Article  ADS  Google Scholar 

  • Arnaud, C.-A., Effantin, G., VivÒs, C., Engilberge, S., Bacia, M., Boulanger, P., Girard, E., Schoehn, G., Breyton, C. (2017) Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat. Comm. 8:1953.

    Google Scholar 

  • Arunmanee, W., Harris, J.R., Lakey, J.H. (2014) Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals. J. Membr. Biol. 247:949–956.

    Article  Google Scholar 

  • Baboolal, T.G., Conroy, M.J., Gill, K., Ridley, H., Visudtiphole, V., Bullough, P.A., Lakey, J.H. (2008) Colicin N binds to the periphery of its receptor and translocator, outer membrane protein F. Structure 16:371–379.

    Article  Google Scholar 

  • Bai, X.-C., McMullan, G., Scheres, S.H.W. (2015a) How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40:49–57.

    Article  Google Scholar 

  • Bai, X.-C., Rajendra, E., Yang, G., Shi, Y., Scheres, S.H.W. (2015b) Sampling the conformational space of the catalytic subunit of human γ-secretase. eLIFE 4:e11182.

    Article  Google Scholar 

  • Bai, X.-C., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S.H.W., Shi, Y. (2015c) An atomic structure of human γ-secretase. Nature 525:212–218.

    Article  ADS  Google Scholar 

  • Baker, M.R., Fan, G., Serysheva, I.I. (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur. J. Transl. Myol. 25:35–48.

    Article  Google Scholar 

  • Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., Kühlbrandt, W. (2017) Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170:693–700.e697.

    Article  Google Scholar 

  • Bazzacco, P., Billon-Denis, E., Sharma, K.S., Catoire, L.J., Mary, S., Le Bon, C., Point, E., Banères, J.-L., Durand, G., Zito, F., Pucci, B., Popot, J.-L. (2012) Non-ionic homopolymeric amphipols: Application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430.

    Article  Google Scholar 

  • Beckham, K.S., Ciccarelli, L., Bunduc, C.M., Mertens, H.D., Ummels, R., Lugmayr, W., Mayr, J., Rettel, M., Savitski, M.M., Svergun, D.I., Bitter, W., Wilmanns, M., Marlovits, T.C., Parret, A.H., Houben, E.N. (2017) Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat. Microbiol. 2:17047.

    Article  Google Scholar 

  • Botte, M., Zaccai, N.R., Lycklama à Nijeholt, J., Martin, R., Knoops, K., Papai, G., Zou, J., Deniaud, A., Karuppasamy, M., Jiang, Q., Singha Roy, A., Schulten, K., Schultz, P., Rappsilber, J., Zaccai, G., Berger, I., Collinson, I., Schaffitzel, C. (2016) A central cavity within the holotranslocon suggests a mechanism for membrane protein insertion. Sci. Rep. 6:38399.

    Article  ADS  Google Scholar 

  • Breyton, C., Tribet, C., Olive, J., Dubacq, J.-P., Popot, J.-L. (1997) Dimer to monomer conversion of the cytochrome b6 f complex: causes and consequences. J. Biol. Chem. 272:21892–21900.

    Article  Google Scholar 

  • Callaway, E. (2015) The revolution will not be crystallized. Nature 525:172–174.

    Article  ADS  Google Scholar 

  • Cao, E., Cordero-Morales, J.F., Liu, B., Qin, F., Julius, D. (2013a) TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77:667–679.

    Article  Google Scholar 

  • Cao, E., Liao, M., Cheng, Y., Julius, D. (2013b) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118.

    Article  ADS  Google Scholar 

  • Carazo, J.M., Sorzano, C.O.S., Otón, J., Marabini, R., Vargas, J. (2015) Three-dimensional reconstruction methods in single-particle analysis from transmission electron microscopy data. Arch. Biochem. Biophys. 581:39–48.

    Article  Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Popot, J.-L., Guittet, E. (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J. Magn. Res. 197:91–95.

    Article  ADS  Google Scholar 

  • Catoire, L.J., Zoonens, M., van Heijenoort, C., Giusti, F., Guittet, E., Popot, J.-L. (2010) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur. Biophys. J. 39:623–630.

    Article  Google Scholar 

  • Champeil, P., Menguy, T., Tribet, C., Popot, J.-L., le Maire, M. (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 275:18623–18637.

    Article  Google Scholar 

  • Charvolin, D., Perez, J.-B., Rouvière, F., Giusti, F., Bazzacco, P., Abdine, A., Rappaport, F., Martinez, K.L., Popot, J.-L. (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc. Natl. Acad. Sci. USA 106:405–410.

    Article  ADS  Google Scholar 

  • Chen, Y., Clarke, O.B., Kim, J., Stowe, S., Kim, Y.-K., Assur, Z., Cavalier, C., Godoy-Ruiz, R., von Alpen, D.C., Manzini, C., Blaner, W.S., Frank, J., Quadro, L., Weber, D.J., Shapiro, L., Hendrickson, W.A., Mancia, F. (2016) Structure of the STRA6 receptor for retinol uptake. Science 353:pii aad 8266–8261.

    Article  Google Scholar 

  • Cheng, Y. (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450–457.

    Article  Google Scholar 

  • Cheng, Y., Grigorieff, G., Penczek, P.A., Walz, T. (2015) A primer to single-particle cryo-electron microscopy. Cell 161:438–449.

    Article  Google Scholar 

  • Chiu, Y.H., Jin, X., Medina, C., Leonhardt, S.A., Kiessling, V., Bennett, B.C., Shu, S., Tamm, L.K., Yeager, M., Ravichandran, K.S., Bayliss, D.A. (2017) A quantized mechanism for activation of pannexin channels. Nat. Commun. 8:14324.

    Article  ADS  Google Scholar 

  • Chowdhury, S., Ketcham, S.A., Schroer, T.A., Lander, G.C. (2015) Structural organization of the dynein-dynactin complex bound to microtubules. Nat. Struct. Mol. Biol. 22:345–347.

    Article  Google Scholar 

  • Constantine, M., Liew, C.K., Lo, V., Macmillan, A., Cranfield, C.G., Sunde, M., Whan, R., Graham, R.M., Martinac, B. (2016) Heterologously-expressed and liposome-reconstituted human transient receptor potential melastatin 4 channel (TRPM4) is a functional tetramer. Sci. Rep. 6:19352.

    Article  ADS  Google Scholar 

  • Cvetkov, T.L., Huynh, K.W., Cohen, M.R., Moiseenkova-Bell, V.Y. (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J. Biol. Chem. 286:38168–38176.

    Article  Google Scholar 

  • Dahmane, T., Giusti, F., Catoire, L.J., Popot, J.-L. (2011) Sulfonated amphipols: Synthesis, properties and applications. Biopolymers 95:811–823.

    Article  Google Scholar 

  • Dahmane, T., Rappaport, F., Popot, J.-L. (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur. Biophys. J. 42:85–101.

    Article  Google Scholar 

  • De Zorzi, R., Liao, M., Walz, T. (2016) Single-particle electron microscopy in the study of membrane protein structure. Microscopy (Oxf) 65:81–96.

    Article  Google Scholar 

  • Dobro, M.J., Melanson, L.A., Jensen, G.J., McDowall, A.W. (2010) Plunge freezing for electron cryomicroscopy. Meth. Enzymol. 481:63–82.

    Article  Google Scholar 

  • Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W., Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228.

    Article  Google Scholar 

  • Dubochet, J. (2015) A reminiscence about early times of vitreous water in electron cryomicroscopy. Biophys. J. 109:812–817.

    Google Scholar 

  • Efremov, R.G., Leitner, A., Aebersold, R., Raunser, S. (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39–43.

    Article  ADS  Google Scholar 

  • Ekiert, D.C., Bhabha, G., Isom, G.L., Greenan, G., Ovchinnikov, S., Henderson, I.R., Cox, J.S., Vale, R.D. (2017) Architectures of lipid transport systems for the bacterial outer membrane. Cell 169:273–285.

    Article  Google Scholar 

  • Elad, N., De Strooper, B., Lismont, S., Hagen, W., Veugelen, S., Arimon, M., Horré, K., Berezovska, O., Sachse, C., Chávez-Gutiérrez, L. (2015) The dynamic conformational landscape of γ-secretase. J. Cell Sci. 128:589–598.

    Article  Google Scholar 

  • Etzkorn, M., Raschle, T., Hagn, F., Gelev, V., Rice, A.J., Walz, T., Wagner, G. (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401.

    Article  Google Scholar 

  • Fan, G., Gonzalez, J., Popova, O.B., Wensel, T.G., Serysheva, I.I. (2014) A first look into the 3D structure of the TRPV2 channel by single-particle cryo-EM. Biophys. J. 106:600a–601a.

    Article  Google Scholar 

  • Fernández-Ballester, G., Ferrer-Montiel, A. (2008) Molecular modeling of the full-length human TRPV1 channel in closed and desensitized states. J. Membr. Biol. 223:161–172.

    Article  Google Scholar 

  • Ferrandez, Y., Dezi, M., Bosco, M., Urvoas, A., Valério, M., Le Bon, C., Giusti, F., Broutin, I., Durand, G., Polidori, A., Popot, J.-L., Picard, M., Minard, P. (2014) Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J. Membr. Biol. 247:925–940.

    Article  Google Scholar 

  • Fitzpatrick, A.W.P., Llabrés, S., Neuberger, A., Blaza, J.N., Bai, X.-C., Okada, U., Murakami, S., van Veen, H.W., Zachariae, U., Scheres, S.H.W., Luisi, B.F., Du, D. (2017) Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nat. Microbiol. 2:17070.

    Article  Google Scholar 

  • Flötenmeyer, M., Weiss, H., Tribet, C., Popot, J.-L., Leonard, K. (2007) The use of amphipathic polymers for cryo-electron microscopy of NADH:ubiquinone oxidoreductase (Complex I). J. Microsc. 227:229–235.

    Article  MathSciNet  Google Scholar 

  • Frank, J. (2006) Three-dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in their Native State. Oxford Univerity Press, New York, 342 p.

    Book  Google Scholar 

  • Fujiyoshi, Y. (2011) Electron crystallography for structural and functional studies of membrane proteins. J Electron Microsc (Tokyo) 60 Suppl 1:S149-S159.

    Article  Google Scholar 

  • Gao, Y., Cao, E., Julius, D., Cheng, Y. (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–351.

    Article  ADS  Google Scholar 

  • Ge, J., Li, W., Zhao, Q., Li, N., Chen, M., Zhi, P., Li, R., Gao, N., Xiao, B., Yang, M. (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69.

    Article  ADS  Google Scholar 

  • Giusti, F., Kessler, P., Westh Hansen, R., Della Pia, E.A., Le Bon, C., Mourier, G., Popot, J.-L., Martinez, K.L., Zoonens, M. (2015) Synthesis of a polyhistidine-bearing amphipol and its use for immobilizing membrane proteins. Biomacromolecules 16:3751–3761.

    Article  Google Scholar 

  • Giusti, F., Popot, J.-L., Tribet, C. (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: A study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380.

    Article  Google Scholar 

  • Glaeser, R.M., Han, B.G., Csencsits, R., Killilea, A., Pulk, A., Cate, J.H.D. (2016) Factors that influence the formation and stability of thin, cryo-EM specimens. Biophys. J. 110:749–755.

    Article  ADS  Google Scholar 

  • Goehring, A., Lee, C.-H., Wang, K.H., Michel, J.C., Claxton, D.P., Baconguis, I., Althoff, T., Fischer, S., Garcia, C., Gouaux, E. (2014) Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9:2574–2585.

    Article  Google Scholar 

  • Gohon, Y. (2002) Etude structurale et fonctionnelle de deux protéines membranaires, la bactériorhodopsine et le récepteur nicotinique de l'acétylcholine, maintenues en solution aqueuse non détergente par des polymères amphiphiles. Université Paris-VI, Paris, 467 p.

    Google Scholar 

  • Gohon, Y., Dahmane, T., Ruigrok, R., Schuck, P., Charvolin, D., Rappaport, F., Timmins, P., Engelman, D.M., Tribet, C., Popot, J.-L., Ebel, C. (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys. J. 94:3523–3537.

    Article  ADS  Google Scholar 

  • Gohon, Y., Giusti, F., Prata, C., Charvolin, D., Timmins, P., Ebel, C., Tribet, C., Popot, J.-L. (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290.

    Article  Google Scholar 

  • Gorzelle, B.M., Hoffman, A.K., Keyes, M.H., Gray, D.N., Ray, D.G., Sanders II, C.R. (2002) Amphipols can support the activity of a membrane enzyme. J. Am. Chem. Soc. 124:11594–11595.

    Article  Google Scholar 

  • Goyal, P., Krasteva, P.V., Van Gerven, N., Gubellini, F., Van den Broeck, I., Troupiotis-Tsaïlaki, A., Jonckheere, W., Péhau-Arnaudet, G., Pinkner, J.S., Chapman, M.R., Hultgren, S.J., Howorka, S., Fronzes, R., Remaut, H. (2014) Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516:250–253.

    Article  ADS  Google Scholar 

  • Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., Yang, M. (2016) The architecture of the mammalian respirasome. Nature 537:639–643.

    Article  ADS  Google Scholar 

  • Guénebaut, V., Schlitt, A., Weiss, H., Leonard, K., Friedrich, T. (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 276:105–112.

    Article  Google Scholar 

  • Gulati, S., Jamshad, M., Knowles, T.J., Morrison, K.A., Downing, R., Cant, N., Collins, R., Koenderink, J.B., Ford, R.C., Overduin, M., Kerr, I.D., Dafforn, T.R., Rothnie, A.J. (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 461:269–278.

    Article  Google Scholar 

  • He, Y., Gao, X., Goswami, D., Hou, L., Pal, K., Yin, Y., Zhao, G., Ernst, O.P., Griffin, P., Melcher, K., Xu, H.E. (2017) Molecular assembly of rhodopsin with G protein-coupled receptor kinases. Cell Res. 2017:1–20.

    Google Scholar 

  • Henderson, R. (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Quart. Rev. Biophys. 28:171–193.

    Article  Google Scholar 

  • Henderson, R. (2013) Ion channel seen by electron microscopy. Nature 504:93–94.

    Article  ADS  Google Scholar 

  • Henderson, R. (2015) Overview and future of single particle electron cryomicroscopy. Arch. Biochem. Biophys. 581:19–24.

    Article  Google Scholar 

  • Henderson, R., McMullan, G. (2013) Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice. Microscopy (Oxf) 62:43–50.

    Article  Google Scholar 

  • Henderson, R., Sali, A., Baker, M.L., Carragher, B., Devkota, B., Downing, K.H., Egelman, E.H., Feng, Z., Frank, J., Grigorieff, N., Jiang, W., Ludtke, S.J., Medalia, O., Penczek, P.A., Rosenthal, P.B., Rossmann, M.G., Schmid, M.F., Schröder, G.F., Steven, A.C., Stokes, D.L., Westbrook, J.D., Wriggers, W., Yang, H., Young, J., Berman, H.M., Chiu, W., Kleywegt, G.J., Lawson, C.L. (2012) Outcome of the first electron microscopy validation task force meeting. Structure 20:205–214.

    Article  Google Scholar 

  • Hoenger, A., Pagès, J.-M., Fourel, D., Engel, A. (1993) The orientation of porin OmpF in the outer membrane of Escherichia coli. J. Mol. Biol. 233:400–413.

    Article  Google Scholar 

  • Huynh, K.W., Cohen, M.R., Chakrapani, S., Holdaway, H.A., Stewart, P.L., Moiseenkova-Bell, V.Y. (2014a) Structural insight into the assembly of TRPV channels. Structure 22:260–268.

    Article  Google Scholar 

  • Huynh, K.W., Cohen, M.R., Jiang, J., Samanta, A., Lodowski, D.T., Zhou, H., Moiseenkova-Bell, V. (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 7:1130.

    Article  Google Scholar 

  • Huynh, K.W., Cohen, M.R., Moiseenkova-Bell, V.Y. (2014b) Application of amphipols for structure-functional analysis of TRP channels. J. Membr. Biol. 247:843–851.

    Article  Google Scholar 

  • Jeong, H., Kim, J.-S., Song, S., Shigematsu, H., Yokoyama, T., Hyun, J., Ha, N.-C. (2016) Pseudoatomic structure of the tripartite multidrug efflux pump AcrAB-TolC reveals the intermeshing cogwheel-like interaction between AcrA and TolC. Structure 24:272–276.

    Article  Google Scholar 

  • Jin, P., Bulkley, D., Guo, Y., Zhang, W., Guo, Z., Huynh, W., Wu, S., Meltzer, S., Cheng, T., Jan, L.Y., Jan, Y.-N., Cheng, Y. (2017) Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547:118–122.

    Article  ADS  Google Scholar 

  • Karlsson, G. (2001) Thickness measurements of lacey carbon films. J. Microsc. 203:326–328.

    Article  MathSciNet  Google Scholar 

  • Kawate, T., Gouaux, E. (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681.

    Article  Google Scholar 

  • Kelly, D.F., Abeyrathne, P.D., Dukovski, D., Walz, T. (2008) The Affinity Grid: a pre-fabricated EM grid for monolayer purification. J. Mol. Biol. 382:423–433.

    Article  Google Scholar 

  • Kevany, B.M., Tsybovsky, Y., Campuzano, I.D.G., Schnier, P.D., Engel, A., Palczewski, K. (2013) Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J. Biol. Chem. 288:36272–36284.

    Article  Google Scholar 

  • Khoshouei, M., Radjainia, M., Baumeister, W., Danev, R. (2017) Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nat. Commun. 8:16099.

    Article  ADS  Google Scholar 

  • Klammt, C., Perrin, M.-H., Maslennikov, I., Renault, L., Krupa, M., Kwiatkowski, W., Stahlberg, H., Vale, W., Choe, S. (2011) Polymer-based cell-free expression of ligand-binding family B G-protein coupled receptors without detergents. Prot. Sci. 20:1030–1041.

    Article  Google Scholar 

  • Kühlbrandt, W. (2013) Introduction to electron crystallography. Methods Mol. Biol. 955:1–16.

    Article  Google Scholar 

  • Kühlbrandt, W. (2014a) Cryo-EM enters a new era. eLife:e03678.

    Google Scholar 

  • Kühlbrandt, W. (2014b) The resolution revolution. Science 343:1443–1444.

    Article  ADS  Google Scholar 

  • Kühlbrandt, W. (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol. 13:89.

    Article  Google Scholar 

  • Lau, W.C., Rubinstein, J.L. (2013) Single-particle electron microscopy. Methods Mol. Biol. 955:401–426.

    Article  Google Scholar 

  • Le Bon, C., Della Pia, E.A., Giusti, F., Lloret, N., Zoonens, M., Martinez, K.L., Popot, J.-L. (2014a) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. 42:e83.

    Article  Google Scholar 

  • Le Bon, C., Popot, J.-L., Giusti, F. (2014b) Labeling and functionalizing amphipols for biological applications. J. Membr. Biol. 247:797–814.

    Article  Google Scholar 

  • Leis, A., Rockel, B., Andrees, L., Baumeister, W. (2009) Visualizing cells at the nanoscale. Trends Biochem. Sci. 34:60–70.

    Article  Google Scholar 

  • Letts, J.A., Fiedorczuk, K., Sazanov, L.A. (2016) The architecture of respiratory supercomplexes. Nature 537:644–648.

    Article  ADS  Google Scholar 

  • Lewis, B.A., Engelman, D.M. (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166:211–217.

    Article  Google Scholar 

  • Li, M., Zhang, W.K., Benvin, N.M., Zhou, X., Su, D., Li, H., Wang, S., Michailidis, I.E., Tong, L., Li, X., Yang, J. (2017a) Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat. Struct. Mol. Biol. 24:205–213.

    Article  Google Scholar 

  • Li, M., Zhou, X., Wang, S., Michailidis, I., Gong, Y., Su, D., Li, H., Li, X., Yang, J. (2017b) Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542:60–65.

    Article  ADS  Google Scholar 

  • Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., Cheng, Y. (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Meth. 10:584–590.

    Article  Google Scholar 

  • Liao, M., Cao, E., Julius, D., Cheng, Y. (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112.

    Article  ADS  Google Scholar 

  • Liao, M., Cao, E., Julius, D., Cheng, Y. (2014) Single-particle electron cryo-microscopy of a mammalian ion channel. Curr. Opin. Struct. Biol. 27:1–7.

    Article  Google Scholar 

  • Lu, P., Bai, X.-C., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scheres, S.H.W., Shi, Y. (2014) Three-dimensional structure of human γ-secretase. Nature 512:166–170.

    Article  ADS  Google Scholar 

  • Lučič, V., Rigort, A., Baumeister, W. (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202:407–419.

    Article  Google Scholar 

  • Madej, M.G., Ziegler, C.M. (2018) Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflügers Archiv - Eur. J. Physiol. 470:213–225.

    Article  Google Scholar 

  • Martinez, K.L., Gohon, Y., Corringer, P.-J., Tribet, C., Mérola, F., Changeux, J.-P., Popot, J.-L. (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett. 528:251–256.

    Article  Google Scholar 

  • Mazhab-Jafari, M.T., Rubinstein, J.L. (2016) Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. Sci. Adv. 2:e1600725.

    Article  ADS  Google Scholar 

  • Milne, J.L., Borgnia, M.J., Bartesaghi, A., Tran, E.E., Earl, L.A., Schauder, D.M., Lengyel, J., Pierson, J., Patwardhan, A., Subramaniam, S. (2013) Cryo-electron microscopy—a primer for the non-microscopist. FEBS J. 280:28–45.

    Article  Google Scholar 

  • Miyaguchi, K. (2014) Direct imaging electron microscopy (EM) methods in modern structural biology: Overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol. Cell 106:323–345.

    Article  Google Scholar 

  • Murakami, S., Nakashima, R., Yamashita, E., Yamaguchi, A. (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593.

    Article  ADS  Google Scholar 

  • Nagy, J.K., Kuhn Hoffmann, A., Keyes, M.H., Gray, D.N., Oxenoid, K., Sanders, C.R. (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett. 501:115–120.

    Article  Google Scholar 

  • Nogales, E., Scheres, S.H.W. (2015) Cryo-EM: A unique tool for the visualization of macromolecular complexity. Mol. Cell 58:677–689.

    Article  Google Scholar 

  • Ohi, M., Li, Y., Cheng, Y., Walz, T. (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol. Proced. Online 6:23–34.

    Article  Google Scholar 

  • Orlova, E.V., Saibil, H.R. (2011) Structural analysis of macromolecular assemblies by electron microscopy. Chem. Rev. 111:7710–7748.

    Article  Google Scholar 

  • Paulsen, C.E., Armache, J.-P., Gao, Y., Cheng, Y., Julius, D. (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520:511–517.

    Article  ADS  Google Scholar 

  • Perlmutter, J.D., Popot, J.-L., Sachs, J.N. (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J. Membr. Biol. 247:883–895.

    Article  Google Scholar 

  • Perry, T., Souabni, H., Rapisarda, C., Fronzes, R., Giusti, F., Popot, J.-L., Zoonens, M., Gubellini, F. (2018) Visualizing transmembrane regions of protein complexes by electron microscopy using biotinylated amphipols, submitted for publication.

    Google Scholar 

  • Picard, M., Dahmane, T., Garrigos, M., Gauron, C., Giusti, F., le Maire, M., Popot, J.-L., Champeil, P. (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869.

    Article  Google Scholar 

  • Popot, J.-L., Berry, E.A., Charvolin, D., Creuzenet, C., Ebel, C., Engelman, D.M., Flötenmeyer, M., Giusti, F., Gohon, Y., Hervé, P., Hong, Q., Lakey, J.H., Leonard, K., Shuman, H.A., Timmins, P., Warschawski, D.E., Zito, F., Zoonens, M., Pucci, B., Tribet, C. (2003) Amphipols: polymeric surfactants for membrane biology research. Cell. Mol. Life Sci. 60:1559–1574.

    Article  Google Scholar 

  • Postis, V., Rawson, S., Mitchell, J.K., Lee, S.C., Parslowc, R.A., Dafforn, T.R., Baldwin, S.A., Muench, S.P. (2015) The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim. Biophys. Acta 1848:496–501.

    Article  Google Scholar 

  • Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A. (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Meth. 14:290–296.

    Article  Google Scholar 

  • Radermacher, M., Wagenknecht, T., Verschoor, A., Frank, J. (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146:113–136.

    Article  Google Scholar 

  • Rahmeh, R., Damian, M., Cottet, M., Orcel, H., Mendre, C., Durroux, T., Sharma, K.S., Durand, G., Pucci, B., Trinquet, E., Zwier, J.M., Deupi, X., Bron, P., J.-L B, Mouillac, B., Granier, S. (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 109:6733–6738.

    Article  ADS  Google Scholar 

  • Raunser, S., Walz, T. (2009) Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Annu. Rev. Biophys. 38:89–105.

    Article  Google Scholar 

  • Rosenthal, P.B., Henderson, R. (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333:721–745.

    Article  Google Scholar 

  • Rubinstein, J.L. (2007) Structural analysis of membrane protein complexes by single-particle electron microscopy. Methods 41:409–416.

    Article  Google Scholar 

  • Saxton, W.O., Baumeister, W. (1982) The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127:127–138.

    Article  Google Scholar 

  • Schabert, F.A., Engel, A. (1994) Reproducible acquisition of Escherichia coli porin surface topographs by atomic-force microscopy. Biophys. J. 67:2394–2403.

    Article  ADS  Google Scholar 

  • Schäfer, E., Seelert, H., Reifschneider, N.H., Krause, F., Dencher, N.A., Vonck, J. (2006) Architecture of active mammalian respiratory chain supercomplexes. J. Biol. Chem. 281:15370–15375.

    Article  Google Scholar 

  • Scheres, S.H.W., Chen, S. (2012) Prevention of overfitting in cryo-EM structure determination. Nat. Meth. 9:853–854.

    Article  Google Scholar 

  • Schneck, E., Schubert, T., Konovalov, O.V., Quinn, B.E., Gutsmann, T., Brandenburg, K., Oliveira, R.G., Pink, D.A., Tanaka, M. (2010) Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence X-ray fluorescence. Proc. Natl. Acad. Sci. USA 107:9147–9151.

    Article  ADS  Google Scholar 

  • Schoebel, S., Mi, W., Stein, A., Ovchinnikov, S., Pavlovicz, R., DiMaio, F., Baker, D., Chambers, M.G., Su, H., Li, D., Rapoport, T.A., Liao, M. (2017) Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548:352–355.

    Article  ADS  Google Scholar 

  • Schröder, R.S. (2015) Advances in electron microscopy: A qualitative view of instrumentation development for macromolecular imaging and tomography. Arch. Biochem. Biophys. 581:25–38.

    Article  ADS  Google Scholar 

  • Schulz, S., Wilkes, M., Mills, D.J., Kühlbrandt, W., Meier, T. (2017) Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep. 18:526–535.

    Article  Google Scholar 

  • Selmi, D.N., Adamson, R.J., Attrill, H., Goddard, A.D., Gilbert, R.J.C., Watts, A., Turberfield, A.J. (2011) DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11:657–660.

    Article  ADS  Google Scholar 

  • Serysheva, I.I., Orlova, E.V., Chiu, W., Sherman, M.B., Hamilton, S.L., van Heel, M. (1995) Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nat. Struct. Biol. 2:18–24.

    Article  Google Scholar 

  • Shao, J., Fu, Z., Ji, Y., Guan, X., Guo, S., Ding, Z., Yang, X., Cong, Y., Shen, Y. (2016) Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) forms a Ca2+/H+ antiporter. Sci. Rep. 6:34174.

    Article  ADS  Google Scholar 

  • Shen, P.S., Yang, X., DeCaen, P.G., Liu, X., Bulkley, D., Clapham, D.E., Cao, E. (2016) The structure of the Polycystic Kidney Disease channel PKD2 in lipid nanodiscs. Cell 167:763–773.e711.

    Article  Google Scholar 

  • Sousa, J.S., Mills, D.J., Vonck, J., Kühlbrandt, W. (2016) Functional asymmetry and electron flow in the bovine respirasome. eLIFE 5:e21290.

    Article  Google Scholar 

  • Spear, J.M., Koborssy, D.A., Schwartz, A.B., Johnson, A.J., Audhya, A., Fadool, D.A., Stagg, S.M. (2015) Kv1.3 contains an alternative C-terminal ER exit motif and is recruited into COPII vesicles by Sec24a. BMC Biochem. 16:16.

    Article  Google Scholar 

  • Stahlberg, H., Biyani, N., Engel, A. (2015) 3D reconstruction of two-dimensional crystals. Arch. Biochem. Biophys. 581:68–77.

    Article  Google Scholar 

  • Stark, H., Chari, A. (2016) Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy (Oxf) 65:23–34.

    Article  Google Scholar 

  • Stock, D., Leslie, A.G.W., Walker, J.E. (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705.

    Article  Google Scholar 

  • Suárez-Suárez, S., Carriedo, G.A., Presa Soto, A. (2013) Gold-decorated chiral macroporous films by the self-assembly of functionalised block copolymers. Chem. Eur. J. 19:15933–15940.

    Article  Google Scholar 

  • Sun, L., Zhao, L., Yang, G., Yan, C., Zhou, R., Zhou, X., Xie, T., Zhao, Y., Wu, S., Li, X., Shi, Y. (2015) Structural basis of human γ-secretase assembly. Proc. Natl. Acad. Sci. USA 112:6003–6008.

    Article  ADS  Google Scholar 

  • Sverzhinsky, A., Qian, S., Yang, L., Allaire, M., Moraes, I., Ma, D., Chung, J.W., Zoonens, M., Popot, J.-L., Coulton, J.W. (2014) Amphipol-trapped ExbB-ExbD membrane protein complex from Escherichia coli: A biochemical and structural case study. J. Membr. Biol. 247:1005–1018.

    Article  Google Scholar 

  • Terahara, T., Kodera, N., Uchihashi, T., Ando, T., Namba, K., Minamino, T. (2017) Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Sci. Adv. 3:eaao4119.

    Google Scholar 

  • Tribet, C., Audebert, R., Popot, J.-L. (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: Application to integral membrane proteins. Langmuir 13:5570–5576.

    Article  Google Scholar 

  • Tribet, C., Diab, C., Dahmane, T., Zoonens, M., Popot, J.-L., Winnik, F.M. (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634.

    Article  Google Scholar 

  • Tribet, C., Mills, D., Haider, M., Popot, J.-L. (1998) Scanning transmission electron microscopy study of the molecular mass of amphipol/cytochrome b6 f complexes. Biochimie 80:475–482.

    Article  Google Scholar 

  • Tsybovsky, Y., Orban, T., Molday, R.S., Taylor, D., Palczewski, K. (2013) Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure 21:854–860.

    Article  Google Scholar 

  • Ubarretxena-Belandia, I., Stokes, D.L. (2010) Present and future of membrane protein structure determination by electron crystallography. Adv. Protein Chem. Struct. Biol. 81:33–60.

    Article  Google Scholar 

  • Vahedi-Faridi, A., Jastrzebska, B., Palczewski, K., Engel, A. (2013) 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy. Microscopy (Oxf) 62:95–107.

    Article  Google Scholar 

  • van Heel, M., Frank, J. (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194.

    Google Scholar 

  • van Pee, K., Neuhaus, A., D’Imprima, E., Mills, D.J., Kühlbrandt, W., Yildiz, Ö. (2017) CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of pneumolysin. eLlife 6:e23644.

    Google Scholar 

  • Venkatachalam, K., Montell, C. (2007) TRP channels. Annu. Rev. Biochem. 76:387–417.

    Article  Google Scholar 

  • Villa, E., Schaffer, M., Plitzko, J.M., Baumeister, W. (2013) Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23:771–777.

    Article  Google Scholar 

  • Vinothkumar, K.R., Zhu, J., Hirst, J. (2014) Architecture of mammalian respiratory complex I. Nature 515:80–84.

    Article  ADS  Google Scholar 

  • Vinothkumar, K.R. (2015) Membrane protein structures without crystals, by single-particle electron cryomicroscopy. Curr. Opin. Struct. Biol. 33:103–114.

    Article  Google Scholar 

  • Vinothkumar, K.R., Henderson, R. (2016) Single-particle electron cryomicroscopy: trends, issues and future perspective. Q. Rev. Biophys. 49:e13.

    Google Scholar 

  • Wang, Z., Fan, G., Hryc, C.F., Blaza, J.N., Serysheva, I.I., Schmid, M.F., Chiu, W., Luisi, B.F., Du, D. (2017) An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 6:e24905.

    Google Scholar 

  • Wei, R., Wang, X., Zhang, Y., Mukherjee, S., Zhang, L., Chen, Q., Huang, X., Jing, S., Liu, C., Li, S., Wang, G., Xu, Y., Zhu, S., Williams, A.J., Sun, F., C.C. Y. (2016) Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1. Cell Res. 26:977–994.

    Article  Google Scholar 

  • Wilkens, S. (2000) F1FO-ATP synthase–stalking mind and imagination. J. Bioenerg. Biomembr. 32:333–339.

    Article  Google Scholar 

  • Wilkens, S., Capaldi, R.A. (1998a) Electron microscopic evidence of two stalks linking the F1 and FO parts of the Escherichia coli ATP synthase. Biochim. Biophys. Acta 1365:93–97.

    Article  Google Scholar 

  • Wilkens, S., Capaldi, R.A. (1998b) ATP synthase’s second stalk comes into focus. Nature 393:29.

    Article  ADS  Google Scholar 

  • Wilkens, S., Zhou, J., Nakayama, R., Dunn, S.D., Capaldi, R.A. (2000) Localization of the δ subunit in the Escherichia coli F1FO-ATPsynthase by immuno-electron microscopy: The δ subunit binds on top of the F1. J. Mol. Biol. 295:387–391.

    Article  Google Scholar 

  • Wilkes, M., Madej, M.G., Kreuter, L., Rhinow, D., Heinz, V., De Sanctis, S., Ruppel, S., Richter, R.M., Joos, F., Grieben, M., Pike, A.C., Huiskonen, J.T., Carpenter, E.P., Kühlbrandt, W., Witzgall, R., Ziegler, C. (2017) Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel polycystin-2. Nat. Struct. Mol. Biol. 24:123–130.

    Article  Google Scholar 

  • Wilkinson, M., Chaban, Y., Wigley, D.B. (2016a) Mechanism for nuclease regulation in RecBCD. eLIFE 5:e18227.

    Google Scholar 

  • Wilkinson, M., Troman, L., Wan Nur Ismah, W.A.K., Chaban, Y., Avison, M.B., Dillingham, M.S., Wigley, D.B. (2016b) Structural basis for the inhibition of RecBCD by Gam and its synergistic antibacterial effect with quinolones. eLIFE 5:e22963.

    Google Scholar 

  • Wisedchaisri, G., Reichow, S.L., Gonen, T. (2011) Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19:1381–1393.

    Article  Google Scholar 

  • Wojtowicz, H., Prochnicka-Chalufour, A., de Amorim, G.C., Roudenko, O., Simenel, C., Malki, I., Pehau-Arnaudet, G., Gubellini, F., Koutsioubas, A., Pérez, J., Delepelaire, P., Delepierre, M., Fronzes, R., Izadi-Pruneyre, N. (2016) Structural basis of the signalling through a bacterial membrane receptor HasR deciphered by an integrative approach. Biochem. J. 473:2239–2248.

    Article  Google Scholar 

  • Wong, W., Bai, X.-C., Brown, A., Fernandez, I.S., Hanssen, E., Condron, M., Tan, Y.H., Baum, J., Scheres, S.H.W. (2014) Cryo-EM structure of the Plasmodium falciparum 80 S ribosome bound to the anti-protozoan drug emetine. eLife 3:e03080.

    Article  Google Scholar 

  • Wu, Z.S., Cui, Z.C., Cheng, H., Fan, C., Melcher, K., Jiang, Y., Zhang, C.H., Jiang, H.L., Cong, Y., Liu, Q., Xu, H.E. (2015) High yield and efficient expression and purification of the human 5-HT3A receptor. Acta Pharmacol. Sin. 36:1024–1032.

    Article  Google Scholar 

  • Xu, J., Gui, M., Wang, D., Xiang, Y. (2016) The bacteriophage Φ29 tail possesses a pore-forming loop for cell membrane penetration. Nature 534:544–547.

    Article  ADS  Google Scholar 

  • Yan, Z., Bai, X.-C., Yan, C., Wu, J., Li, Z., Wei, T.X., Peng, W., Yin, C.-C., Li, X., Scheres, S.H.W., Shi, Y., Yan, N. (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:50–55.

    Article  ADS  Google Scholar 

  • Yang, G., Zhou, R., Shi, Y. (2017) Cryo-EM structures of human γ-secretase. Curr. Opin. Struct. Biol. 46:55–64.

    Article  Google Scholar 

  • Zalk, R., Clarke, O.B., Georges, A., Grassucci, R.A., Reiken, S., Mancia, F., Hendrickson, W.A., Frank, J., Marks, A.R. (2015) Structure of a mammalian ryanodine receptor. Nature 517:44–49.

    Article  ADS  Google Scholar 

  • Zhang, N., Tsybovsky, Y., Kolesnikov, A.V., Rozanowska, M., Swider, M., Schwartz, S.B., Stone, E.M., Palczewska, G., Maeda, A., Kefalov, V.J., Jacobson, S.G., Cideciyan, A.V., Palczewski, K. (2015) Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum. Mol. Genet. 24:3220–3237.

    Article  Google Scholar 

  • Zhou, X., Li, M., Su, D., Jia, Q., Li, H., Li, X., Yang, J. (2017) Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat. Struct. Mol. Biol. 24:1146–1154.

    Article  Google Scholar 

  • Zickermann, V., Kerscher, S., Zwicker, K., Tocilescua, M.A., Radermacher, M., Brand, U. (2009) Architecture of complex I and its implications for electron transfer and proton pumping. Biochim. Biophys. Acta. 1787:574–583.

    Article  Google Scholar 

  • Zoonens, M., Catoire, L.J., Giusti, F., Popot, J.-L. (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc. Natl. Acad. Sci. USA 102:8893–8898.

    Article  ADS  Google Scholar 

  • Zoonens, M., Giusti, F., Zito, F., Popot, J.-L. (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404.

    Article  Google Scholar 

  • Zorman, S., Botte, M., Jiang, Q., Collinson, I., Schaffitzel, C. (2015) Advances and challenges of membrane-protein complex production. Curr. Opin. Struct. Biol. 32:123–130.

    Article  Google Scholar 

  • Zubcevic, L., Herzik, M.A., Jr., Chung, B.C., Liu, Z., Lander, G.C., Lee, S.-Y. (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23:180–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). The Use of Amphipols for Electron Microscopy. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_12

Download citation

Publish with us

Policies and ethics