Skip to main content

Principles of Cellulose Derivatization

  • Chapter
  • First Online:
Cellulose Derivatives

Abstract

The reactions known in organic chemistry can, in principle, be applied to polymers carrying the same functional groups. However, there are characteristics that should be kept in mind:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegmund G, Klemm D (2002) Cellulose sulfonates: preparation, properties, subsequent reactions. Polym News 27:84–90

    CAS  Google Scholar 

  2. Heinze T (2009) Hot topics in polysaccharide chemistry—selected examples. Macromol Symp 280:15–27

    Article  CAS  Google Scholar 

  3. Heinze T, Koschella A, Brackhagen M, Engelhardt J, Nachtkamp K (2006) Studies on non-natural deoxyammonium cellulose. Macromol Symp 244:74–82

    Article  CAS  Google Scholar 

  4. Nakagawa A, Ishizu C, Sarbova V, Koschella A, Takano T, Heinze T, Kamitakahara H (2012) 2-O-methyl- and 3,6-di-O-methyl-celluloses from natural cellulose: synthesis and structure characterization. Biomacromol 13:2760–2768

    Article  CAS  Google Scholar 

  5. Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromol 12:1956–1972

    Article  CAS  Google Scholar 

  6. Heinze T, Koschella A (2005) Carboxymethyl ethers of cellulose and starch–A review. Macromol Symp 223:13–39

    Article  CAS  Google Scholar 

  7. Steinmeier H (2004) Chemistry of cellulose acetylation. Macromol Symp 208:49–60

    Article  CAS  Google Scholar 

  8. Philipp B, Schempp W (2009) Progress in cellulose research in the reflection of the Zellcheming cellulose symposium. Macromol Symp 280:4–14

    Article  CAS  Google Scholar 

  9. Petzold K, Koschella A, Klemm D, Heublein B (2003) Silylation of cellulose and starch-selectivity, structure analysis, and subsequent reactions. Cellulose 10:251–269

    Article  CAS  Google Scholar 

  10. Gericke M, Liebert T, El Seoud OA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493

    Article  CAS  Google Scholar 

  11. Heinze T, Gericke M (2013) Ionic liquids as solvents for homogeneous derivatization of cellulose: challenges and opportunities. In: Fang Z, Smith RL, Qi X (eds) Production of biofuels and chemicals with ionic liquids. Springer, Berlin, pp 107–144

    Google Scholar 

  12. Heinze T, Liebert T (2004) Chemical characteristics of cellulose acetate. Macromol Symp 208:167–237

    Article  CAS  Google Scholar 

  13. Law RC (2004) Cellulose acetate in textile application. Macromol Symp 208:255–265

    Article  CAS  Google Scholar 

  14. Malm CJ, Tanghe LO, Laird BC, Smith GD (1953) Relative rates of acetylation of the hydroxyl groups in cellulose acetate. J Am Chem Soc 75:80–84

    Article  CAS  Google Scholar 

  15. Jain RK, Agnish SL, Lal K, Bhatnagar HL (1985) Reactivity of hydroxyl groups in cellulose towards chloro(p-tolyl)methane. Makromol Chem 186:2501–2512

    Article  CAS  Google Scholar 

  16. Kwatra HS, Caruthers JM, Tao BY (1992) Synthesis of long chain fatty acids esterified onto cellulose via the vacuum-acid chloride process. Ind Eng Chem Res 31:2647–2651

    Article  CAS  Google Scholar 

  17. Edgar KJ (2009) Direct synthesis of partially substituted cellulose esters. In: Edgar KJ, Heinze T, Buchanan CM (eds) Polysaccharide materials: performance by design, ACS Symp Ser 1017:213–229

    Google Scholar 

  18. Yan L, Li W, Qi Z, Liu S (2006) Solvent-free synthesis of cellulose acetate by solid superacid catalysis. J Polym Res 13:375–378

    Article  CAS  Google Scholar 

  19. Edgar KJ, Pecorini TJ, Glasser WG (1998) Long-chain cellulose esters: preparation, properties, and perspective. ACS Symp Ser 688:38–60

    Article  CAS  Google Scholar 

  20. Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization and structure-property relations. Cellulose 10:283–296

    Article  CAS  Google Scholar 

  21. Ratanakamnuan U, Atong D, Aht-Ong D (2012) Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohydr Polym 87:84–94

    Article  CAS  Google Scholar 

  22. Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supra-molecular structure and physico-chemical properties of cellulose on its dissolution in the lithium chloride/N,N-dimethylacetamide solvent system. Biomacromol 6:2638–2647

    Article  CAS  Google Scholar 

  23. El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Adv Polym Sci 186:103–149

    Article  CAS  Google Scholar 

  24. Trulove PC, Reichert WM, De Long HC, Kline SR, Rahatekar SS, Gilman JW, Muthukumar M (2009) The structure and dynamics of silk and cellulose dissolved in ionic liquids. ECS Trans 16:111–117

    Article  CAS  Google Scholar 

  25. Kuzmina O, Sashina E, Troshenkowa S, Wawro D (2010) Dissolved state of cellulose in ionic liquids: the impact of water. Fibres Text East Eur 18:32–37

    CAS  Google Scholar 

  26. Ramos LA, Morgado DL, El Seoud AO, da Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392

    Article  CAS  Google Scholar 

  27. Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228

    Article  CAS  Google Scholar 

  28. Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpeläinen I (2013) Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. Chemsuschem 6:2161–2169

    Article  CAS  Google Scholar 

  29. Olsson C, Westman G (2013) Wet spinning of cellulose from ionic liquid solutions-viscometry and mechanical performance. J Appl Polym Sci 127:4542–4548

    Article  CAS  Google Scholar 

  30. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromol 10:1188–1194

    Article  CAS  Google Scholar 

  31. Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr Polym 92:540–544

    Article  CAS  Google Scholar 

  32. Nawaz H, Pires PAR, Bioni TA, Arêas EPG, El Seoud OA (2014) Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents. Cellulose 21:1193–1204

    Article  CAS  Google Scholar 

  33. Marson GA, El Seoud OA (1999) A Novel, efficient procedure for acylation of cellulose under homogeneous solution conditions. J Appl Polym Sci 74:1355–1360

    Article  CAS  Google Scholar 

  34. Fidale LC, Possidonio S, El Seoud OA (2009) Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol Biosci 9:813–821

    Article  CAS  Google Scholar 

  35. Gericke M, Fardim P, Heinze T (2012) Ionic liquids—Promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  36. Strlic M, Kolar J (2003) Size exclusion chromatography of cellulose in LiCl/N,N-dimethylacetamide. J Biochem Biophys Methods 56:265–279

    Article  CAS  Google Scholar 

  37. Wang Z, Yokoyama T, Chang H-M, Matsumoto Y (2009) Dissolution of beech and spruce milled woods in LiCl/DMSO. J Agric Food Chem 57:6167–6170

    Article  CAS  Google Scholar 

  38. Kostag M, Liebert T, El Seoud OA, Heinze T (2013) Efficient cellulose solvent: quaternary ammonium chlorides. Macromol Rapid Commun 34:1580–1584

    Article  CAS  Google Scholar 

  39. Amigues E, Hardacre C, Keane G, Migaud M, O’Neill M (2006) Ionic liquids—media for unique phosphorus chemistry. Chem Commun 1:72–74

    Google Scholar 

  40. Regiani AM, Frollini E, Marson GA, Arantes GM, El Seoud OA (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci Part A 37:1357–1363

    Article  CAS  Google Scholar 

  41. Possidonio S, Fidale LC, El Seoud AO (2010) Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci Part A 48:134–143

    Article  CAS  Google Scholar 

  42. Koehler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314

    Article  CAS  Google Scholar 

  43. Duchemin BJ-CZ, Newman RH, Staiger MP (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320

    Article  CAS  Google Scholar 

  44. Peres de Paula M, Lacerda TM, Frollini E (2008) Sisal cellulose acetates obtained from heterogeneous reactions. Express Polym Lett 2:423–428

    Google Scholar 

  45. Yang Z, Xu S, Ma X, Wang S (2008) Characterization and acetylation behavior of bamboo pulp. Wood Sci Technol 42:621–632

    Article  CAS  Google Scholar 

  46. Diamantoglou M, Lemke HD, Vienken J (1994) Cellulose-ester as membrane materials for hemodialysis. Int J Artif Org 17:385–391

    CAS  Google Scholar 

  47. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin, p 43

    Google Scholar 

  48. Klug ED, Tinsley JS (1950) Carboxyalkyl ethers of cellulose. US Patent 2,517,577, 08 Aug 1950

    Google Scholar 

  49. Broderick AE (1954) Hydroxyalkylation of polysaccharides. US Patent 2,682,535, 29 June 1954

    Google Scholar 

  50. Felcht UH, Perplies E (1983) Cellulose ethers with dimethoxyethane as a dispersing adjuvant. DE Patent 3,147,434 A1, 09 June 1983

    Google Scholar 

  51. Isogai A, Ishizu A, Nakano J (1984) Preparation of tri-O-benzylcellulose by the use of nonaqueous cellulose solvents. J Appl Polym Sci 29:2097–2109

    Article  CAS  Google Scholar 

  52. Isogai A, Ishizu A, Nakano J (1984) Preparation of tri-O-substituted cellulose ethers by the use of a nonaqueous cellulose solvent. J Appl Polym Sci 29:3873–3882

    Article  CAS  Google Scholar 

  53. Isogai A, Ishizu A, Nakano J (1986) Preparation of tri-O-alkylcelluloses by the use of a nonaqueous cellulose solvent and their physical characteristics. J Appl Polym Sci 31:341–352

    Article  CAS  Google Scholar 

  54. Isogai A, Ishizu A, Nakano J (1987) Dissolution mechanism of cellulose in sulfur dioxide-amine-dimethyl sulfoxide. J Appl Polym Sci 33:1283–1290

    Article  CAS  Google Scholar 

  55. Schaub M, Fakirov C, Schmidt A, Lieser G, Wenz G, Wegner G, Albouy PA, Wu H, Foster MD, Majrkzak C et al (1995) Ultrathin layers and supramolecular architecture of isopentylcellulose. Macromolecules 28:1221–1228

    Article  CAS  Google Scholar 

  56. Fakirov C, Lieser G, Wegner G (1997) Chain conformation and packing of isopentyl cellulose in thin films. Macromol Chem Phys 198:3407–3424

    Article  CAS  Google Scholar 

  57. D’Aprano G, Henry C, Godt A, Wegner G (1998) Design, characterization, and processing of cellulose-S-acetyl: a precursor to an electroactive cellulose. Macromol Chem Phys 199:2777–2783

    Article  Google Scholar 

  58. Petrus L, Gray DG, BeMiller JN (1995) Homogeneous alkylation of cellulose in lithium chloride/dimethyl sulfoxide solvent with dimsyl sodium activation. A proposal for the mechanism of cellulose dissolution in lithium chloride/DMSO. Carbohydr Res 268:319–323

    Article  CAS  Google Scholar 

  59. Takaragi A, Minoda M, Miyamoto T, Liu HQ, Zhang LN (1999) Reaction characteristics of cellulose in the lithium chloride/1,3-dimethyl-2-imidazolidinone solvent system. Cellulose 6:93–102

    Article  CAS  Google Scholar 

  60. Takahashi S, Fujimoto T, Miyamoto T, Inagaki H (1987) Relationship between distribution of substituents and water solubility of O-methyl cellulose. J Polym Sci Part A Polym Chem 25:987–994

    Article  CAS  Google Scholar 

  61. Nojiri M, Kondo T (1996) Application of regioselectively substituted methylcelluloses to characterize the reaction mechanism of cellulase. Macromolecules 29:2392–2395

    Article  CAS  Google Scholar 

  62. Itagaki H, Takahashi I, Natsume M, Kondo T (1994) Gelation of cellulose whose hydroxyl groups are specifically substituted by the fluorescent groups. Polym Bull 32:77–81

    Article  CAS  Google Scholar 

  63. Kondo T, Grey DG (1991) The preparation of O-methyl- and O-ethylcelluloses having controlled distribution of substituents. Carbohydr Res 220:173–183

    Article  CAS  Google Scholar 

  64. Kern H, Choi S, Wenz G (1998) New functional derivatives from 2,3-di-O-alkyl-celluloses. Polym Prepr (Am Chem Soc Div Polym Chem) 39:80–81

    CAS  Google Scholar 

  65. Harkness BR, Gray DG (1990) Left- and right-handed chiral nematic mesophase of (trityl)(alkyl)cellulose derivatives. Can J Chem 68:1135–1139

    Article  CAS  Google Scholar 

  66. Landoll LM (1982) Nonionic polymer surfactants. J Polym Sci Polym Chem Ed 20:443–455

    Article  CAS  Google Scholar 

  67. Schulz DN, Block J, Valint PL Jr (1994) Synthesis and characterization of hydrophobically associating water-soluble polymers. In: Dubin P, Bock J, Davis R, Schulz DN, Thies C (eds) Macromolecular Complexes in Chemistry and Biology. Springer, Heidelberg, pp 3–13

    Chapter  Google Scholar 

  68. Tanaka R, Meadows J, Williams PA, Philips GO (1992) Interaction of hydrophobically modified hydroxyethyl cellulose with various added surfactants. Macromolecules 25:1304–1310

    Article  CAS  Google Scholar 

  69. Tanaka R, Meadows J, Phillips GO, Williams PA (1990) Viscometric and spectroscopic studies on the solution behavior of hydrophobically modified cellulosic polymers. Carbohydr Polym 12:443–459

    Article  CAS  Google Scholar 

  70. Landoll LM (1979) Cellulose derivatives. US Patent 4,228,277 (Hercules)

    Google Scholar 

  71. Sau AC, Landoll LM (1989) Synthesis and solution properties of hydrophobically modified (hydroxyethyl) cellulose. In: Glass JE (ed) Polymers in Aqueous Media, vol 223. American Chemical Society, Washington, DC, pp 343–364

    Google Scholar 

  72. Höfer R, Schulte HG, Schmitz J (2007) In Kittel H, Ortelt M (eds) Rheologie in Farben und Lacken, 2nd ed. Lehrbuch der Lacke und Beschichtungen, Bd. 4. S. Hirzel Verlag, Stuttgart

    Google Scholar 

  73. Um S-U, Poptoshev E, Pugh RJ (1997) Aqueous solutions of ethyl (hydroxyethyl) cellulose and hydrophobic modified ethyl (hydroxyethyl) cellulose polymer: dynamic surface tension measurements. J Colloid Interface Sci 193:41–49

    Article  CAS  Google Scholar 

  74. Schempp W, Krause T, Seifried U, Koura A (1984) Production of highly substituted trimethylsilyl celluloses in the system dimethylacetamide/lithium chloride. Papier (Darmstadt) 38:607–610

    CAS  Google Scholar 

  75. Weigel P, Gensrich J, Wagenknecht W (1996) Model investigations on the effect of an intermediate derivatization on structure and properties of regenerated cellulose filaments. Papier (Darmstadt) 50:483–490

    CAS  Google Scholar 

  76. Nicholson MD, Merritt FM (1985) Cellulose ethers. In: Nevell TP, Zeronian SH (eds) Cellulose Chemistry, its application. Horwood Publ., Chichester, pp 363–383

    Google Scholar 

  77. Nishio N, Takano T, Kamitakahara H, Nakatsubo F (2005) Preparation of high regioselectively mono-substituted carboxymethyl celluloses. Cellul Chem Technol 39:377–387

    CAS  Google Scholar 

  78. Karakawa M, Nakai S, Kamitakahara H, Takano T, Nakatsubo F (2007) Preparation of highly regioregular O-methylcelluloses and their water solubility. Cellul Chem Technol 41:569–573

    CAS  Google Scholar 

  79. Kamitakahara H, Funakoshi T, Nakai S, Takano T, Nakatsubo F (2009) Syntheses of 6-O-ethyl/methyl-celluloses via ring-opening copolymerization of 3-O-benzyl-6-O-ethyl/methyl-α-d-glucopyranose 1,2,4-orthopivalates and their structure-property relationships. Cellulose 16:1179–1185

    Article  CAS  Google Scholar 

  80. Kamitakahara H, Funakoshi T, Takano T, Nakatsubo F (2009) Syntheses of 2,6-O-alkyl celluloses: influence of methyl and ethyl groups regioselectively introduced at O-2 and O-6 positions on their solubility. Cellulose 16:1167–1178

    Article  CAS  Google Scholar 

  81. Kamitakahara H, Funakoshi T, Nakai S, Takano T, Nakatsubo F (2010) Synthesis and structure/property relationships of regioselective 2-O-, 3-O- and 6-O-ethyl celluloses. Macromol Biosci 10:638–647

    Article  CAS  Google Scholar 

  82. Philipp B, Wagenknecht W, Wagenknecht M, Nehls I, Klemm D, Stein A, Heinze T, Heinze U, Helbig K (1995) Regioselective esterification and etherification of cellulose and cellulose derivatives. 1. Problems and description of the reaction systems. Papier (Bingen) 49:3–7

    CAS  Google Scholar 

  83. Koschella A, Fenn D, Illy N, Heinze T (2006) Regioselectively functionalized cellulose derivatives: a mini review. Macromol Symp 244:59–73

    Article  CAS  Google Scholar 

  84. Deus C, Friebolin H, Siefert E (1991) Partially acetylated cellulose. Synthesis and determination of the substituent distribution via proton NMR spectroscopy. Makromol Chem 192:75–83

    Article  CAS  Google Scholar 

  85. Wagenknecht W (1996) Regioselectively substituted cellulose derivatives by modification of commercial cellulose acetates. Papier (Darmstadt) 50:712–720

    CAS  Google Scholar 

  86. Altaner C, Saake B, Tenkanen M, Eyzaguirre J, Faulds CB, Biely P, Viikari L, Siika-aho M, Puls J (2003) Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. J Biotechnol 105:95–104

    Article  CAS  Google Scholar 

  87. Xu D, Edgar KJ (2012) TBAF and cellulose esters: unexpected deacylation with unexpected regioselectivity. Biomacromol 13:299–303

    Article  CAS  Google Scholar 

  88. Zheng X, Gandour RD, Edgar KJ (2014) Remarkably regioselective deacylation of cellulose esters using tetraalkylammonium salts of the strongly basic hydroxide ion. Carbohydr Polym 111:25–32

    Article  CAS  Google Scholar 

  89. Elschner T, Ganske K, Heinze T (2013) Synthesis and aminolysis of polysaccharide carbonates. Cellulose 20:339–353

    Article  CAS  Google Scholar 

  90. Xu D, Li B, Tate C, Edgar KJ (2011) Studies on regioselective acylation of cellulose with bulky acid chlorides. Cellulose 18:405–419

    Article  CAS  Google Scholar 

  91. Camacho Gomez JA, Erler UW, Klemm DO (1996) 4-methoxy substituted trityl groups in 6-O protection of cellulose: homogeneous synthesis, characterization, detritylation. Macromol Chem Phys 197:953–964

    Article  CAS  Google Scholar 

  92. Iwata T, Azuma J, Okamura K, Muramoto M, Chun B (1992) Preparation and N.M.R. assignments of cellulose mixed esters regioselectively substituted by acetyl and propanoyl groups. Carbohydr Res 224:277–283

    Article  CAS  Google Scholar 

  93. Hsieh C-WC, Kadla JF (2012) Effect of regiochemistry on the viscoelastic properties of cellulose acetate gels. Cellulose 19:1567–1581

    Article  CAS  Google Scholar 

  94. Heinze T, Vieira M, Heinze U (2000) New polymers based on cellulose. Lenzinger Ber 79:39–44

    CAS  Google Scholar 

  95. Petzold-Welcke K, Kotteritzsch M, Heinze T (2010) 2,3-O-Methyl cellulose: studies on synthesis and structure characterization. Cellulose 17:449–457

    Article  CAS  Google Scholar 

  96. Kondo T (1993) Preparation of 6-O-alkylcelluloses. Carbohydr Res 238:231–240

    Article  CAS  Google Scholar 

  97. Heinze T, Röttig K, Nehls I (1994) Synthesis of 2,3-O-carboxymethylcellulose. Macromol Rapid Comm 15:311–317

    Article  CAS  Google Scholar 

  98. Heinze U, Heinze T, Klemm D (1999) Synthesis and structure characterization of 2,3-O-carboxymethylcellulose. Macromol Chem Phys 200:896–902

    Article  CAS  Google Scholar 

  99. Liu H-Q, Zhang L-N, Takaragi A, Miyamoto T (1997) Water solubility of regioselectively 2,3-O-substituted carboxymethylcellulose. Macromol Rapid Comm 18:921–925

    Article  CAS  Google Scholar 

  100. Schaller J, Heinze T (2005) Studies on the synthesis of 2,3-O-hydroxyalkyl ethers of cellulose. Macromol Biosci 5:58–63

    Article  CAS  Google Scholar 

  101. Larsen FH, Schobitz M, Schaller J (2012) Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy. Carbohydr Polym 89:640–647

    Article  CAS  Google Scholar 

  102. Halake KS, Choi S-Y, Hong SM, Seo SY, Lee J (2013) Regioselective substitution of 2-isocyanatoethyl methacrylate onto cellulose. J Appl Polym Sci 128:2056–2062

    CAS  Google Scholar 

  103. Ifuku S, Kamitakahara H, Takano T, Tanaka F, Nakatsubo F (2004) Preparation of 6-O-(4-alkoxytrityl)celluloses and their properties. Org Biomol Chem 2:402–407

    Article  CAS  Google Scholar 

  104. Klemm D, Stein A (1995) Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. J Macromol Sci Part A Pure Appl Chem A32:899–904

    Article  CAS  Google Scholar 

  105. Koschella A, Klemm D (1997) Silylation of cellulose regiocontrolled by bulky reagents and dispersity in the reaction media. Macromol Symp 120:115–125

    Article  CAS  Google Scholar 

  106. Fenn D, Pfeifer A, Heinze T (2007) Studies on the synthesis of 2,6-di-O-thexyldimethylsilyl cellulose. Cellul Chem Technol 41:87–91

    CAS  Google Scholar 

  107. Pawlowski WP, Sankar SS, Gilbert RD, Fornes RE (1987) Synthesis and solid state 13C-NMR studies of some cellulose derivatives. J Polym Sci Part A Polym Chem 25:3355–3362

    Article  CAS  Google Scholar 

  108. Klemm D, Schnabelrauch M, Stein A, Philipp B, Wagenknecht W, Nehls I (1990) Recent results from homogeneous esterification of cellulose using soluble intermediate compounds. Papier (Bingen) 44:624–632

    CAS  Google Scholar 

  109. Heinze T, Pfeifer A, Petzold K (2008) Functionalization pattern of tert-butyldimethylsilyl cellulose evaluated by NMR spectroscopy. BioResources 3:79–90

    CAS  Google Scholar 

  110. Xu D, Voiges K, Elder T, Mischnick P, Edgar KJ (2012) Regioselective synthesis of cellulose ester homopolymers. Biomacromolecules 13:2195–2201

    Article  CAS  Google Scholar 

  111. Koschella A, Heinze T, Klemm D (2001) First synthesis of 3-O-functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose. Macromol Biosci 1:49–54

    Article  CAS  Google Scholar 

  112. Koschella A, Fenn D, Heinze T (2006) Water soluble 3-mono-O-ethyl cellulose: synthesis and characterization. Polym Bull 57:33–41

    Article  CAS  Google Scholar 

  113. Fenn D, Heinze T (2009) Novel 3-mono-O-hydroxyethyl cellulose: synthesis and structure characterization. Cellulose 16:853–861

    Article  CAS  Google Scholar 

  114. Heinze T, Koschella A (2008) Water-soluble 3-O-methoxyethyl cellulose: synthesis and characterization. Carbohydr Res 343:668–673

    Article  CAS  Google Scholar 

  115. Schumann K, Pfeifer A, Heinze T (2009) Novel cellulose ethers: synthesis and structure characterization of 3-mono-O-(3’-hydroxypropyl) cellulose. Macromol Symp 280:86–94

    Article  CAS  Google Scholar 

  116. Heinze T, Pfeifer A, Sarbova V, Koschella A (2011) 3-O-Propyl cellulose: cellulose ether with exceptionally low flocculation temperature. Polym Bull 66:1219–1229

    Google Scholar 

  117. Fenn D, Pohl M, Heinze T (2009) Novel 3-O-propargyl cellulose as a precursor for regioselective functionalization of cellulose. React Funct Polym 69:347–352

    Article  CAS  Google Scholar 

  118. Illy N (2006) Regioselective cellulose functionalization: characterization and properties of 3-O-cellulose ethers. Diploma Thesis, Friedrich Schiller University of Jena

    Google Scholar 

  119. Petzold K, Klemm D, Heublein B, Burchard W, Savin G (2004) Investigations on structure of regioselectively functionalized celluloses in solution exemplified by using 3-O-alkyl ethers and light scattering. Cellulose 11:177–193

    Article  CAS  Google Scholar 

  120. Bar-Nir BB, Kadla JF (2009) Synthesis and structural characterization of 3-O-ethylene glycol functionalized cellulose derivatives. Carbohydr Polym 76:60–67

    Article  CAS  Google Scholar 

  121. Kadla JF, Asfour FH, Bar-Nir B (2007) Micropatterned thin film honeycomb materials from regiospecifically modified cellulose. Biomacromol 8:161–165

    Article  CAS  Google Scholar 

  122. Xu WZ, Zhang X, Kadla JF (2012) Design of functionalized cellulosic honeycomb films: site-specific biomolecule modification via “click chemistry”. Biomacromol 13:350–357

    Article  CAS  Google Scholar 

  123. Sun S, Foster TJ, MacNaughtan W, Mitchell JR, Fenn D, Koschella A, Heinze Th (2009) Self-association of cellulose ethers with random and regioselective distribution of substitution. J Polym Sci Part B Polym Phys 47:1743–1752

    Article  CAS  Google Scholar 

  124. Heinze T, Wang Y, Koschella A, Sullo A, Foster TJ (2012) Mixed 3-mono-O-alkyl cellulose: synthesis, structure characterization and thermal properties. Carbohydr Polym 90:380–386

    Article  CAS  Google Scholar 

  125. Sullo A, Wang Y, Mitchell JR, Koschella A, Heinze Z, Foster TJ (2012) New regioselective substituted cellulose ethers: thermo-rheological study. Special publication—Royal Society of Chemistry 335 (Gums Stab Food Ind 16:45–57)

    Google Scholar 

  126. Petzold-Welcke K, Koetteritzsch M, Fenn D, Koschella A, Heinze T (2010) Study on synthesis and NMR characterization of 2,3-O-hydroxyethyl cellulose depending on synthesis conditions. Macromol Symp 294:133–140

    Article  CAS  Google Scholar 

  127. Arisawa M, Kato C, Kaneko H, Nishida A, Nakagawa M (2000) Concise synthesis of azacycloundecenes using ring-closing metathesis (RCM). J Chem Soc Perkin Trans 1:1873–1876

    Article  Google Scholar 

  128. Kamitakahara H, Koschella A, Mikawa Y, Nakatsubo F, Heinze T, Klemm D (2008) Syntheses and comparison of 2,6-Di-O-methyl celluloses from natural and synthetic celluloses. Macromol Biosci 8:690–700

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinze, T., El Seoud, O.A., Koschella, A. (2018). Principles of Cellulose Derivatization. In: Cellulose Derivatives. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-73168-1_4

Download citation

Publish with us

Policies and ethics