Skip to main content

Environmental Cycles and Biological Rhythms During Early Development

  • Chapter
  • First Online:
Emerging Issues in Fish Larvae Research

Abstract

The environment in which aquatic organisms inhabit is not constant and many factors such as light and temperature display cyclic and predictable variations. Animals present biological rhythms in many of their physiological variables to adapt to these cyclic changes, timing their functions to occur when the possibility of success is greater. Besides, the underwater photo-environment is complex since light characteristics (i.e. intensity and spectrum) are variable and depend on the absorbance properties of the water column. Fish development is hence highly influenced by all of these factors, affecting processes such as survival, growth, hatching, sex determination/differentiation and occurrence of malformations. The aim of this chapter is to review how fish development and performance is shaped by environmental factors, paying special attention to the effects of environmental cycles of light and temperature, the characteristics of illumination and the role of the developing biological clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanco-Vives B, Villamizar N, Ramos J et al (2010) Effect of daily thermo- and photo-cycles of different light spectrum on the development of Senegal sole (Solea senegalensis) larvae. Aquaculture 306:137–145

    Article  Google Scholar 

  • Blanco-Vives B, Vera LM, Ramos J et al (2011) Exposure of larvae to daily thermocycle affects gonad development, sex ratio and sexual steroids in Solea senegalensis. J Exp Zool 315:162–169

    Article  CAS  Google Scholar 

  • Blanco-Vives B, Aliaga-Guerrero M, Cañavate JP et al (2012) Metamorphosis induces a light-dependent switch in Senegalese sole (Solea senegalensis) from diurnal to nocturnal behavior. J Biol Rhythms 27:135–144

    Article  CAS  PubMed  Google Scholar 

  • Blaxter JHS (1986) Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance. T Am Fish Soc 115:98–114

    Article  Google Scholar 

  • Boeuf G, Le Bail PY (1999) Does light have an influence on fish growth? Aquaculture 177:129–152

    Article  Google Scholar 

  • Conover DO, Kynard BE (1981) Environmental sex determination: interaction of temperature and genotype in a fish. Science 213:577–579

    Article  CAS  PubMed  Google Scholar 

  • Davie A, Sanchez JA, Vera LM et al (2011) Ontogeny of clock mechanisms during embryogenesis in Rainbow trout (Onchorhynkiss mykiss). Chronobiol Int 28:177–186

    Article  CAS  PubMed  Google Scholar 

  • Dekens MP, Whitmore D (2008) Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J 27:2757–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Di Rosa V, Frigato E, López-Olmeda JF et al (2015) The light wavelength affects the ontogeny of clock gene expression and activity rhythms in zebrafish larvae. PLoS ONE 10(7):e0132235

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Rosa V, Lopez-Olmeda JF, Burguillo A et al (2016) Daily rhythms of the expression of key genes involved in steroidogenesis and gonadal function in zebrafish. PLoS ONE 11:e0157716

    Article  PubMed  PubMed Central  Google Scholar 

  • Downing G, Litvak MK (1999) The influence of light intensity on growth of larval haddock. N Am J Aquacult 61:135–140

    Article  Google Scholar 

  • Gorodilov YN (2010) The biological clock in vertebrate embryogenesis as a mechanism of general control over the developmental organism. Russ J Dev Biol 41:201–216

    Article  Google Scholar 

  • Guerreiro I, Peres H, Castro-Cunha M et al (2012) Effect of temperature and dietary protein/lipid ratio on growth performance and nutrient utilization of juvenile Senegalese sole (Solea senegalensis). Aquacult Nutr 18:98–106

    Article  CAS  Google Scholar 

  • Han D, Xie S, Lei L et al (2004) Effect of light intensity on growth, survival and skin color of juvenile Chinese longsnout cat sh (Leiocassis longirostris Gunther). Aquaculture 248:299–306

    Article  Google Scholar 

  • Idda ML, Bertolucci C, Vallone D et al (2012) Circadian clocks: lessons from fish. Prog Brain Res 199:49–57

    Google Scholar 

  • Kusmic C, Gualtieri P (2000) Morphology and spectral sensitivities of retinal and extraretinal photoreceptors in freshwater teleosts. Micron 31:183–200

    Article  CAS  PubMed  Google Scholar 

  • López-Olmeda JF, Sánchez-Vázquez FJ (2009) Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature. Chronobiol Int 26:200–218

    Article  PubMed  Google Scholar 

  • López-Olmeda JF, Sánchez-Vázquez FJ (2011) Thermal biology of zebrafish (Danio rerio). J Therm Biol 36:91–104

    Article  Google Scholar 

  • Martín-Robles AJ, Aliaga-Guerrero M, Whitmore D et al (2012) The circadian clock machinery during early development of Senegalese sole (Solea senegalensis): effects of constant light and dark conditions. Chronobiol Int 29:1195–1205

    Article  PubMed  Google Scholar 

  • Mata-Sotres JA, Martínez-Rodríguez G, Pérez-Sánchez J et al (2015) Daily rhythms of clock gene expression and feeding behaviour during the larval development in gilthead seabream, Sparus aurata. Chronobiol Int 32:1061–1074

    Article  PubMed  Google Scholar 

  • Ospina-Álvarez N, Piferrer F (2008) Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3:e2837

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandian TJ (2014) Temperature and sex ratio. Environmental sex differentiation in fish. CRC Press, Boca Raton (USA), pp 180–221

    Google Scholar 

  • Pittendrigh CS (1954) On temperature independence in the clock system controlling emergency time in Drosophila. Proc Natl Acad Sci USA 40:1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders DS (2002) Insect clocks. Elsevier Science, pp 576

    Google Scholar 

  • Siegfried KR (2010) In search of determinants: gene expression during gonadal sex differentiation. J Fish Biol 76:1879–1902

    Article  CAS  PubMed  Google Scholar 

  • Vatine G, Vallone D, Gothilf Y et al (2011) It’s time to swim! Zebrafish and the circadian clock. FEBS Lett 585:1485–1494

    Article  CAS  PubMed  Google Scholar 

  • Villamizar N, García-Alcazar A, Sánchez-Vázquez FJ (2009) Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 292:80–86

    Article  Google Scholar 

  • Villamizar N, Ribas L, Piferrer F, Vera LM, Sánchez-Vázquez FJ (2012) Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish. PLoS ONE 7(12):e52153

    Google Scholar 

  • Villamizar N, Blanco-Vives B, Migaud H et al (2011) Effects of light during early larval development of some aquacultured teleosts: a review. Aquaculture 315:86–94

    Article  Google Scholar 

  • Villamizar N, Blanco-Vives B, Oliveira C et al (2013) Circadian rhythms of embryonic development and hatching in fish: a comparative study of zebrafish (diurnal), Senegalese sole (nocturnal), and Somalian cavefish (blind). Chronobiol Int 30:889–900

    Article  PubMed  Google Scholar 

  • Villamizar N, Vera LM, Foulkes NS et al (2014) Effect of lighting conditions on zebrafish growth and development. Zebrafish 11:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier R, Besseau L, Boeuf G et al (2006) Starting the zebrafish pineal circadian clock with a single photic transition. Endocrinology 147:2273–2279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Sánchez-Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez-Vázquez, F.J., López-Olmeda, J.F. (2018). Environmental Cycles and Biological Rhythms During Early Development. In: Yúfera, M. (eds) Emerging Issues in Fish Larvae Research. Springer, Cham. https://doi.org/10.1007/978-3-319-73244-2_2

Download citation

Publish with us

Policies and ethics