Skip to main content

Counting Membrane Systems

  • Conference paper
  • First Online:
Membrane Computing (CMC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10725))

Included in the following conference series:

Abstract

A decision problem is one that has a yes/no answer, while a counting problem asks how many possible solutions exist associated with each instance. Every decision problem X has associated a counting problem, denoted by \(\# X\), in a natural way by replacing the question “is there a solution?” with “how many solutions are there?”. Counting problems are very attractive from a computational complexity point of view: if X is an NP-complete problem then the counting version \(\# X\) is NP-hard, but the counting version of some problems in class P can also be NP-hard. In this paper, a new class of membrane systems is presented in order to provide a natural framework to solve counting problems. The class is inspired in a special kind of non-deterministic Turing machines, called counting Turing machines, introduced by L. Valiant. A polynomial-time and uniform solution to the counting version of the SAT problem (a well-known \(\#\) P-complete problem) is also provided, by using a family of counting polarizationless P systems with active membranes, without dissolution rules and division rules for non-elementary membranes but where only very restrictive cooperation (minimal cooperation and minimal production) in object evolution rules is allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhazov, A., Pan, L.: Polarizationless P systems with active membranes. Grammars 7, 141–159 (2004)

    Google Scholar 

  2. Alhazov, A., Pan, L., Păun, G.: Trading polarizations for labels in P systems with active membranes. Acta Informaticae 41(2–3), 111–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alhazov, A., Burtseva, L., Cojocaru, S., Rogozhin, Y.: Solving PP-complete and #P-complete problems by P systems with active membranes. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 108–117. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95885-7_8

    Chapter  Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  5. Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006). https://doi.org/10.1007/11603047_16

    Chapter  Google Scholar 

  6. Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform solutions to SAT and Subset Sum by spiking neural P systems. Nat. Comput. 8(4), 681–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Păun, G.: Computing with membranes: attacking NP-complete problems. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) UMC’2K. DISCMATH. Springer, London (2000). https://doi.org/10.1007/978-1-4471-0313-4_7

    Google Scholar 

  9. Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Automata Lang. Comb. 6, 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. Control III(3), 295–303 (2008)

    Article  Google Scholar 

  12. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial complexity class in P systems using membrane division. J. Automata Lang. Comb. 11(4), 423–434 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: a characterization of PSPACE. J. Comput. Syst. Sci. 73, 137–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Polarizationless P systems with active membranes: Computational complexity aspects. J. Automata Lang. Comb. 21(1–2), 107–123 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Valencia-Cabrera, L., Orellana-Martín, D., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Minimal cooperation in polarizationless P systems with active membranes. In: Graciani, C., Păun, G., Orellana-Martín, D., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the Fourteenth Brainstorming Week on Membrane Computing, 1–5 February 2016, Sevilla, Spain, pp. 327–356. Fénix Editora (2016)

    Google Scholar 

  17. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Reaching efficiency through collaboration in membrane systems: dissolution, polarization and cooperation. Theoret. Comput. Sci. (2017, in press). https://doi.org/10.1016/j.tcs.2017.04.015

  18. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Cooperation in transport of chemical substances: a complexity approach. Fundamenta Informaticae 154(1–4), 373–385 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life Applications with Membrane Computing. ECC, vol. 25. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55989-6. X + 367 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Orellana-Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valencia-Cabrera, L., Orellana-Martín, D., Riscos-Núñez, A., Pérez-Jiménez, M.J. (2018). Counting Membrane Systems. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2017. Lecture Notes in Computer Science(), vol 10725. Springer, Cham. https://doi.org/10.1007/978-3-319-73359-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73359-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73358-6

  • Online ISBN: 978-3-319-73359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics