Skip to main content

Right Heart Involvement in Hepatic Diseases

  • Chapter
  • First Online:
Right Heart Pathology

Abstract

It is well known there is a relationship between the heart and the liver. A significant proportion of patients with heart failure have suffered at some point from congestive hepatopathy or developed ischemic hepatitis in acute situations. The aim of this chapter is to raise awareness about another situation involving the liver and the heart: patients with primary liver disease that affects the heart. It is a very interesting field, with lots of unknowns, but which deserves our attention as liver disease is prevalent amongst patients worldwide.

In the first part, we will briefly explain the pathophysiology of portal hypertension (PoH), and its systemic consequences that influence heart function. Then, we will focus on three relevant clinical pathologies: cirrhotic cardiomyopathy (CCM), portopulmonary hypertension (PoPH) and hepatopulmonary syndrome (HPS). In the end we will briefly mention other liver disease that may affect the right heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berzigotti A, Seijo S, Reverter E, Bosch J. Assessing portal hypertension in liver diseases. Expert Rev Gastroenterol Hepatol. 2013;7(2):141–55.

    Article  PubMed  CAS  Google Scholar 

  2. Schouten JN, Garcia-Pagan JC, Valla DC, Janssen HL. Idiopathic noncirrhotic portal hypertension. Hepatology. 2011;54(3):1071–81.

    Article  PubMed  Google Scholar 

  3. Rockey DC. Cell and molecular mechanisms of increased intrahepatic resistance and hemodynamic correlates. In: Portal hypertension. Berlin: Springer; 2005. p. 37–50.

    Chapter  Google Scholar 

  4. Reynaert H, Thompson M, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut. 2002;50(4):571–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A, et al. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology. 1996;110(2):534–48.

    Article  PubMed  CAS  Google Scholar 

  6. Gracia-Sancho J, Lavina B, Rodríguez-Vilarrupla A, García-Calderó H, Fernández M, Bosch J, et al. Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology. 2008;47(4):1248–56.

    Article  PubMed  CAS  Google Scholar 

  7. Shah V, Toruner M, Haddad F, Cadelina G, Papapetropoulos A, Choo K, et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology. 1999;117(5):1222–8.

    Article  PubMed  CAS  Google Scholar 

  8. Toubia N, Sanyal AJ. Portal hypertension and variceal hemorrhage. Med Clin North Am. 2008;92(3):551–74.

    Article  PubMed  Google Scholar 

  9. Feldman M, Friedman LS, Brandt LJ. Sleisenger and Fordtran’s gastrointestinal and liver disease E-book: pathophysiology, diagnosis, management, expert consult premium edition-enhanced online features, vol. 1. Amsterdam: Elsevier; 2010.

    Google Scholar 

  10. Sieber CC, Sumanovski LT, Stumm M, van der Kooij M, Battegay E. In vivo angiogenesis in normal and portal hypertensive rats: role of basic fibroblast growth factor and nitric oxide. J Hepatol. 2001;34(5):644–50.

    Article  PubMed  CAS  Google Scholar 

  11. Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodés J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43(1):98–103.

    Article  PubMed  CAS  Google Scholar 

  12. Van Steenkiste C, Geerts A, Vanheule E, Van Vlierberghe H, De Vos F, Olievier K, et al. Role of placental growth factor in mesenteric neoangiogenesis in a mouse model of portal hypertension. Gastroenterology. 2009;137(6):2112–24. e2116.

    Article  PubMed  CAS  Google Scholar 

  13. Coll M, Martell M, Raurell I, Ezkurdia N, Cuenca S, Hernández-Losa J, et al. Atrophy of mesenteric sympathetic innervation may contribute to splanchnic vasodilation in rat portal hypertension. Liver Int. 2010;30(4):593–602.

    Article  PubMed  CAS  Google Scholar 

  14. Ezkurdia N, Coll M, Raurell I, Rodriguez S, Cuenca S, González A, et al. Blockage of the afferent sensitive pathway prevents sympathetic atrophy and hemodynamic alterations in rat portal hypertension. Liver Int. 2012;32(8):1295–305.

    Article  PubMed  CAS  Google Scholar 

  15. Møller S, Bendtsen F, Henriksen JH. Effect of volume expansion on systemic hemodynamics and central and arterial blood volume in cirrhosis. Gastroenterology. 1995;109(6):1917–25.

    Article  PubMed  Google Scholar 

  16. Salerno F, Gerbes A, Ginès P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Postgrad Med J. 2008;84(998):662–70.

    Article  PubMed  CAS  Google Scholar 

  17. Mocarzel LOC, Rossi MM, BdM M, Lanzieri PG, Gismondi RA. Cirrhotic cardiomyopathy: a new clinical phenotype. Arq Bras Cardiol. 2017;108(6):564–8.

    PubMed  PubMed Central  Google Scholar 

  18. Enache I, Oswald-Mammosser M, Woehl-Jaegle M-L, Habersetzer F, Di Marco P, Charloux A, et al. Cirrhotic cardiomyopathy and hepatopulmonary syndrome: prevalence and prognosis in a series of patients. Respir Med. 2013;107(7):1030–6.

    Article  PubMed  Google Scholar 

  19. Lotterer E, Wengert A, Fleig WE. Transjugular intrahepatic portosystemic shunt: short-term and long-term effects on hepatic and systemic hemodynamics in patients with cirrhosis. Hepatology. 1999;29(3):632–9.

    Article  PubMed  CAS  Google Scholar 

  20. Fouad TR, Abdel-Razek WM, Burak KW, Bain VG, Lee SS. Prediction of cardiac complications after liver transplantation. Transplantation. 2009;87(5):763–70.

    Article  PubMed  Google Scholar 

  21. Vogt DP, Henderson JM, Carey WD, Barnes D. The long-term survival and causes of death in patients who survive at least 1 year after liver transplantation. Surgery. 2002;132(4):775–80.

    Article  PubMed  Google Scholar 

  22. Kia L, Shah S, Wang E, Sharma D, Selvaraj S, Medina C, et al. Role of pretransplant echocardiographic evaluation in predicting outcomes following liver transplantation. Am J Transplant. 2013;13(9):2395–401.

    Article  CAS  PubMed  Google Scholar 

  23. Le Pavec J, Humbert M, Hervé P, Simonneau G, Sitbon O. Screening for portopulmonary hypertension with transthoracic echocardiography: implications for early mortality associated with liver transplantation. Am J Respir Crit Care Med. 2009;180(4):378–9.

    Article  Google Scholar 

  24. Naqvi IH, Mahmood K, Naeem M, Vashwani AS, Ziaullah S. The heart matters when the liver shatters! Cirrhotic cardiomyopathy: frequency, comparison, and correlation with severity of disease. Prz Gastroenterol. 2016;11(4):247.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Shaikh S, Abro M, Qazi I, Yousfani A. Frequency of cirrhotic cardiomyopathy in patients with cirrhosis of liver: a tertiary care hospital experience. Pak J Med Sci. 2011;27(4):744–8.

    Google Scholar 

  26. Kazankov K, Holland-Fischer P, Andersen NH, Torp P, Sloth E, Aagaard NK, et al. Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging. Liver Int. 2011;31(4):534–40.

    Article  PubMed  Google Scholar 

  27. Chen Y, Chan AC, Chan S-C, Chok S-H, Sharr W, Fung J, et al. A detailed evaluation of cardiac function in cirrhotic patients and its alteration with or without liver transplantation. J Cardiol. 2016;67(2):140–6.

    Article  PubMed  Google Scholar 

  28. Ma Z, Miyamoto A, Lee SS. Role of altered beta-adrenoceptor signal transduction in the pathogenesis of cirrhotic cardiomyopathy in rats. Gastroenterology. 1996;110(4):1191–8.

    Article  PubMed  CAS  Google Scholar 

  29. Wong F, Villamil A, Merli M, Romero G, Angeli P, Caraceni P, et al. Prevalence of diastolic dysfunction in cirrhosis, and its clinical significance. Hepatology. 2011;54(4):475A–6A.

    Article  CAS  Google Scholar 

  30. Heuer A, Gehl A, Püschel K, Sydow K, Lohse A, Lüth S. 160 high rate of cardiac abnormalities in a post-mortem analysis of patients suffering from liver cirrhosis. J Hepatol. 2011;54:S69.

    Article  Google Scholar 

  31. Bernardi M, Calandra S, Colantoni A, Trevisani F, Raimondo ML, Sica G, et al. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology. 1998;27(1):28–34.

    Article  PubMed  CAS  Google Scholar 

  32. Trevisani F, Merli M, Savelli F, Valeriano V, Zambruni A, Riggio O, et al. QT interval in patients with non-cirrhotic portal hypertension and in cirrhotic patients treated with transjugular intrahepatic porto-systemic shunt. J Hepatol. 2003;38(4):461–7.

    Article  PubMed  Google Scholar 

  33. Ytting H, Henriksen JH, Fuglsang S, Bendtsen F, Møller S. Prolonged Q–T c interval in mild portal hypertensive cirrhosis. J Hepatol. 2005;43(4):637–44.

    Article  PubMed  Google Scholar 

  34. Zambruni A, Di Micoli A, Lubisco A, Domenicali M, Trevisani F, Bernardi M. QT interval correction in patients with cirrhosis. J Cardiovasc Electrophysiol. 2007;18(1):77–82.

    Article  PubMed  Google Scholar 

  35. Bernardi M, Trevisani F, De Palma R, Ligabue A, Capani F, Baraldini M, et al. Chronobiological evaluation of sympathoadrenergic function in cirrhosis: relationship with arterial pressure and heart rate. Gastroenterology. 1987;93(6):1178–86.

    Article  PubMed  CAS  Google Scholar 

  36. Ramond M, Comoy E, Lebrec D. Alterations in isoprenaline sensitivity in patients with cirrhosis: evidence of abnormality of the sympathetic nervous activity. Br J Clin Pharmacol. 1986;21(2):191–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pateron D, Beyne P, Laperche T, Logeard D, Lefilliatre P, Sogni P, et al. Elevated circulating cardiac troponin I in patients with cirrhosis. Hepatology. 1999;29(3):640–3.

    Article  CAS  PubMed  Google Scholar 

  38. Licata A, Corrao S, Petta S, Genco C, Cardillo M, Calvaruso V, et al. NT pro BNP plasma level and atrial volume are linked to the severity of liver cirrhosis. PLoS One. 2013;8(8):e68364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Møller S, Henriksen JH. Cardiovascular complications of cirrhosis. Postgrad Med J. 2009;85(999):44–54.

    PubMed  Google Scholar 

  40. Pozzi M, Grassi G, Ratti L, Favini G, Dell’Oro R, Redaelli E, et al. Cardiac, neuroadrenergic, and portal hemodynamic effects of prolonged aldosterone blockade in postviral child a cirrhosis. Am J Gastroenterol. 2005;100(5):1110.

    Article  PubMed  CAS  Google Scholar 

  41. Henriksen JH, Bendtsen F, Hansen EF, Møller S. Acute non-selective β-adrenergic blockade reduces prolonged frequency-adjusted Q–T interval (QT c) in patients with cirrhosis. Gan To Kagaku Ryoho. 2004;40(2):239–46.

    CAS  Google Scholar 

  42. Zambruni A, Trevisani F, Di Micoli A, Savelli F, Berzigotti A, Bracci E, et al. Effect of chronic β-blockade on QT interval in patients with liver cirrhosis. J Hepatol. 2008;48(3):415–21.

    Article  PubMed  Google Scholar 

  43. Torregrosa M, Aguadé S, Dos L, Segura R, Gónzalez A, Evangelista A, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42(1):68–74.

    Article  PubMed  Google Scholar 

  44. Benjaminov F, Prentice M, Sniderman K, Siu S, Liu P, Wong F. Portopulmonary hypertension in decompensated cirrhosis with refractory ascites. Gut. 2003;52(9):1355–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hoeper M, Halank M, Marx C, Hoeffken G, Seyfarth H, Schauer J, et al. Bosentan therapy for portopulmonary hypertension. Eur Respir J. 2005;25(3):502–8.

    Article  PubMed  CAS  Google Scholar 

  46. Nunes H, Lebrec D, Mazmanian M, Capron F, Heller J, Tazi KA, et al. Role of nitric oxide in hepatopulmonary syndrome in cirrhotic rats. Am J Respir Crit Care Med. 2001;164(5):879–85.

    Article  PubMed  CAS  Google Scholar 

  47. Thenappan T, Goel A, Marsboom G, Fang Y-H, Toth PT, Zhang HJ, et al. A central role for CD68 (+) macrophages in hepatopulmonary syndrome: reversal by macrophage depletion. Am J Respir Crit Care Med. 2011;183(8):1080–91.

    Article  PubMed  Google Scholar 

  48. Zhang J, Yang W, Luo B, Hu B, Maheshwari A, Fallon MB. The role of CX 3 CL1/CX 3 CR1 in pulmonary angiogenesis and intravascular monocyte accumulation in rat experimental hepatopulmonary syndrome. J Hepatol. 2012;57(4):752–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu L, Liu N, Zhao Z, Liu J, Feng Y, Jiang H, et al. TNF-α neutralization improves experimental hepatopulmonary syndrome in rats. Liver Int. 2012;32(6):1018–26.

    Article  PubMed  CAS  Google Scholar 

  50. Rabiller A, Nunes H, Lebrec D, Tazi KA, Wartski M, Dulmet E, et al. Prevention of gram-negative translocation reduces the severity of hepatopulmonary syndrome. Am J Respir Crit Care Med. 2002;166(4):514–7.

    Article  PubMed  Google Scholar 

  51. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2015;37(1):67–119.

    Article  PubMed  Google Scholar 

  52. Rodriguez-Roisin R, Krowka MJ, Herve P, Fallon M. Pulmonary–hepatic vascular disorders (PHD). Eur Respir J. 2004;24(5):861–80.

    Article  PubMed  CAS  Google Scholar 

  53. Kawut SM, Krowka MJ, Trotter JF, Roberts KE, Benza RL, Badesch DB, et al. Clinical risk factors for portopulmonary hypertension. Hepatology. 2008;48(1):196–203.

    Article  PubMed  Google Scholar 

  54. Regev A, Yeshurun M, Rodriguez M, Sagie A, Neff G, Molina E, et al. Transient hepatopulmonary syndrome in a patient with acute hepatitis a. J Viral Hepat. 2001;8(1):83–6.

    Article  PubMed  CAS  Google Scholar 

  55. Fuhrmann V, Madl C, Mueller C, Holzinger U, Kitzberger R, Funk GC, et al. Hepatopulmonary syndrome in patients with hypoxic hepatitis. Gastroenterology. 2006;131(1):69–75.

    Article  PubMed  Google Scholar 

  56. Krowka MJ, Swanson KL, Frantz RP, McGoon MD, Wiesner RH. Portopulmonary hypertension: results from a 10-year screening algorithm. Hepatology. 2006;44(6):1502–10.

    Article  PubMed  Google Scholar 

  57. Grannas G, Neipp M, Hoeper MM, Gottlieb J, Lück R, Becker T, et al. Indications for and outcomes after combined lung and liver transplantation: a single-center experience on 13 consecutive cases. Transplantation. 2008;85(4):524–31.

    Article  PubMed  Google Scholar 

  58. Porres-Aguilar M. Emphasizing the importance of the clinical classification for pulmonary hypertension. Ann Hepatol. 2009;8(3):267–8.

    PubMed  Google Scholar 

  59. Garg A, Armstrong WF. Echocardiography in liver transplant candidates. JACC Cardiovasc Imaging. 2013;6(1):105–19.

    Article  PubMed  Google Scholar 

  60. Lentine KL, Costa SP, Weir MR, Robb JF, Fleisher LA, Kasiske BL, et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates. Circulation. 2012;126(5):617–63.

    Article  PubMed  Google Scholar 

  61. Murray KF, Carithers RL. AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology. 2005;41(6):1407–32.

    Article  PubMed  Google Scholar 

  62. Krowka MJ, Plevak DJ, Findlay JY, Rosen CB, Wiesner RH, Krom RA. Pulmonary hemodynamics and perioperative cardiopulmonary-related mortality in patients with portopulmonary hypertension undergoing liver transplantation. Liver Transpl. 2000;6(4):443–50.

    Article  PubMed  CAS  Google Scholar 

  63. Robalino BD, Moodie DS. Association between primary pulmonary hypertension and portal hypertension: analysis of its pathophysiology and clinical, laboratory and hemodynamic manifestations. J Am Coll Cardiol. 1991;17(2):492–8.

    Article  PubMed  CAS  Google Scholar 

  64. Ashfaq M, Chinnakotla S, Rogers L, Ausloos K, Saadeh S, Klintmalm G, et al. The impact of treatment of portopulmonary hypertension on survival following liver transplantation. Am J Transplant. 2007;7(5):1258–64.

    Article  PubMed  CAS  Google Scholar 

  65. Austin MJ, McDougall NI, Wendon JA, Sizer E, Knisely AS, Rela M, et al. Safety and efficacy of combined use of sildenafil, bosentan, and iloprost before and after liver transplantation in severe portopulmonary hypertension. Liver Transpl. 2008;14(3):287–91.

    Article  PubMed  Google Scholar 

  66. Plotkin JS, Kuo PC, Rubin LJ, Gaine S, Howell CD, Laurin J, et al. Successful use of chronic epoprostenol as a bridge to liver transplantation in severe portopulmonary hypertension1. Transplantation. 1998;65(4):457–9.

    Article  PubMed  CAS  Google Scholar 

  67. Raevens S, De Pauw M, Reyntjens K, Geerts A, Verhelst X, Berrevoet F, et al. Oral vasodilator therapy in patients with moderate to severe portopulmonary hypertension as a bridge to liver transplantation. Eur J Gastroenterol Hepatol. 2013;25(4):495–502.

    Article  PubMed  CAS  Google Scholar 

  68. Ghofrani H-A, Galiè N, Grimminger F, Grünig E, Humbert M, Jing Z-C, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330–40.

    Article  PubMed  CAS  Google Scholar 

  69. Savale L, Magnier R, Le Pavec J, Jaïs X, Montani D, O’Callaghan DS, et al. Efficacy, safety and pharmacokinetics of bosentan in portopulmonary hypertension. Eur Respir J. 2013;41(1):96–103.

    Article  PubMed  CAS  Google Scholar 

  70. Galiè N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA, et al. Ambrisentan in Pulmonary Arterial Hypertension, Randomized, Double-Blind, Placebo-Controlled, Multicenter, Efficacy Studies (ARIES) Group. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008;117(23):3010–9.

    Article  CAS  PubMed  Google Scholar 

  71. Pulido T, Adzerikho I, Channick RN, Delcroix M, Galiè N, Ghofrani H-A, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369(9):809–18.

    Article  CAS  PubMed  Google Scholar 

  72. Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med. 1999;159(6):1925–32.

    Article  PubMed  CAS  Google Scholar 

  73. Sakai T, Planinsic RM, Mathier MA, de Vera ME, Venkataramanan R. Initial experience using continuous intravenous treprostinil to manage pulmonary arterial hypertension in patients with end-stage liver disease. Transpl Int. 2009;22(5):554–61.

    Article  PubMed  CAS  Google Scholar 

  74. Provencher S, Herve P, Jais X, Lebrec D, Humbert M, Simonneau G, et al. Deleterious effects of β-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology. 2006;130(1):120–6.

    Article  PubMed  CAS  Google Scholar 

  75. Fallon MB, Krowka MJ, Brown RS, Trotter JF, Zacks S, Roberts KE, et al. Impact of hepatopulmonary syndrome on quality of life and survival in liver transplant candidates. Gastroenterology. 2008;135(4):1168–75.

    Article  PubMed  Google Scholar 

  76. Fallon MB, Abrams GA. Pulmonary dysfunction in chronic liver disease. Hepatology. 2000;32(4):859–65.

    Article  PubMed  CAS  Google Scholar 

  77. Schenk P, Schöniger-Hekele M, Fuhrmann V, Madl C, Silberhumer G, Müller C. Prognostic significance of the hepatopulmonary syndrome in patients with cirrhosis. Gastroenterology. 2003;125(4):1042–52.

    Article  PubMed  Google Scholar 

  78. Katsuta Y, Honma H, Zhang X-J, Ohsuga M, Komeichi H, Shimizu S, et al. Pulmonary blood transit time and impaired arterial oxygenation in patients with chronic liver disease. J Gastroenterol. 2005;40(1):57–63.

    Article  PubMed  CAS  Google Scholar 

  79. Carter EP, Sato K, Morio Y, McMurtry IF. Inhibition of K Ca channels restores blunted hypoxic pulmonary vasoconstriction in rats with cirrhosis. Am J Physiol Lung Cell Mol Physiol. 2000;279(5):L903–10.

    Article  PubMed  CAS  Google Scholar 

  80. Abrams GA, Jaffe CC, Hoffer PB, Binder HJ, Fallon MB. Diagnostic utility of contrast echocardiography and lung perfusion scan in patients with hepatopulmonary syndrome. Gastroenterology. 1995;109(4):1283–8.

    Article  PubMed  CAS  Google Scholar 

  81. Lange PA, Stoller JK. The hepatopulmonary syndrome. Ann Intern Med. 1995;122(7):521–9.

    Article  PubMed  CAS  Google Scholar 

  82. Gupta S, Castel H, Rao R, Picard M, Lilly L, Faughnan M, et al. Improved survival after liver transplantation in patients with hepatopulmonary syndrome. Am J Transplant. 2010;10(2):354–63.

    Article  CAS  PubMed  Google Scholar 

  83. Matsumori A, Ohashi N, Hasegawa K, Sasayama S, Eto T, Imaizumi T, et al. Hepatitis C virus infection and heart diseases. Jpn Circ J. 1998;62(5):389–91.

    Article  PubMed  CAS  Google Scholar 

  84. Poller W, Kaya Z, Muche M, Kasner M, Skurk C, Kappert K, et al. High incidence of cardiac dysfunction and response to antiviral treatment in patients with chronic hepatitis C virus infection. Clin Res Cardiol. 2017;106(7):551–6.

    Article  PubMed  CAS  Google Scholar 

  85. Terrier B, Karras A, Cluzel P, Collet J-P, Sène D, Saadoun D, et al. Presentation and prognosis of cardiac involvement in hepatitis C virus-related vasculitis. Am J Cardiol. 2013;111(2):265–72.

    Article  PubMed  Google Scholar 

  86. Longo M, Crosignani A, Battezzati P, Giussani CS, Invernizzi P, Zuin M, et al. Hyperlipidaemic state and cardiovascular risk in primary biliary cirrhosis. Gut. 2002;51(2):265–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Propst A, Propst T, Lechleitner M, Hoppichler F, Kathrein H, Vogel W, et al. Hypercholesterolemia in primary biliary cirrhosis is no risk factor for atherosclerosis. Dig Dis Sci. 1993;38(2):379–80.

    Article  PubMed  CAS  Google Scholar 

  88. Floreani A, Variola A, Niro G, Premoli A, Baldo V, Gambino R, et al. Plasma adiponectin levels in primary biliary cirrhosis: a novel perspective for link between hypercholesterolemia and protection against atherosclerosis. Am J Gastroenterol. 2008;103(8):1959.

    Article  PubMed  CAS  Google Scholar 

  89. Keresztes K, Istenes I, Folhoffer A, Lakatos PL, Horvath A, Csak T, et al. Autonomic and sensory nerve dysfunction in primary biliary cirrhosis. World J Gastroenterol. 2004;10(20):3039.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Agelopoulou P, Kapatais A, Varounis C, Grassos C, Kalkandi E, Kouris N, et al. Hepatocellular carcinoma with invasion into the right atrium. Report of two cases and review of the literature. Hepato-Gastroenterology. 2006;54(79):2106–8.

    Google Scholar 

  91. Lin TY, Chiu KM, Chien CY, Wang MJ, Chu SH. Unusual sites of metastatic involvement: case 1. Right ventricular outflow obstruction caused by metastatic hepatocellular carcinoma. J Clin Oncol. 2004;22(6):1152–3.

    Article  PubMed  Google Scholar 

  92. Oncale M, Lewis B. Hepatocellular carcinoma with extension to the heart via the inferior vena cava. Proc (Bayl Univ Med Cent). 2015;28(2):229.

    Article  Google Scholar 

  93. Hayashi N, Yasunori H, Soma I, Fukuchi N, Izawa H, Yoshida T, et al. Non-surgical treatment of hepatocellular carcinoma with tumor thrombus in the right atrium. Gan To Kagaku Ryoho. 2004;31(11):1918–20.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vintilă, AM., Dobrovie, M., Vintilă, V.D. (2018). Right Heart Involvement in Hepatic Diseases. In: Dumitrescu, S., Ţintoiu, I., Underwood, M. (eds) Right Heart Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-73764-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73764-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73763-8

  • Online ISBN: 978-3-319-73764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics