Skip to main content

Smoothing-Based Tests with Directional Random Variables

  • Chapter
  • First Online:
The Mathematics of the Uncertain

Abstract

Testing procedures for assessing specific parametric model forms, or for checking the plausibility of simplifying assumptions, play a central role in the mathematical treatment of the uncertain. No certain answers are obtained by testing methods, but at least the uncertainty of these answers is properly quantified. This is the case for tests designed on the two most general data generating mechanisms in practice: distribution/density and regression models. Testing proposals are usually formulated on the Euclidean space, but important challenges arise in non-Euclidean settings, such as when directional variables (i.e., random vectors on the hypersphere) are involved. This work reviews some of the smoothing-based testing procedures for density and regression models that comprise directional variables. The asymptotic distributions of the revised proposals are presented, jointly with some numerical illustrations justifying the need of employing resampling mechanisms for effective test calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hall et al. [14]’s (1.3) is equivalent to Bai et al. [1]’s (1.3), but the latter employs a notation with a more direct connection with the usual KDE.

References

  1. Bai ZD, Rao CR, Zhao LC (1988) Kernel estimators of density function of directional data. J Multivar Anal 27(1):24–39

    Article  MathSciNet  MATH  Google Scholar 

  2. Bickel PJ, Rosenblatt M (1973) On some global measures of the deviations of density function estimates. Ann Stat 1(6):1071–1095

    Article  MathSciNet  MATH  Google Scholar 

  3. Boente G, Rodríguez D, González-Manteiga W (2014) Goodness-of-fit test for directional data. Scand J Stat 41(1):259–275

    Article  MathSciNet  MATH  Google Scholar 

  4. Durbin J (1973) Weak convergence of the sample distribution function when parameters are estimated. Ann Stat 1:279–290

    Article  MathSciNet  MATH  Google Scholar 

  5. Elderton WP (1902) Tables for testing the goodness of fit of theory to observation. Biometrika 1(2):155–163

    Google Scholar 

  6. Fan J, Gijbels I (1996) Local polynomial modelling and its applications, vol 66. Monographs on statistics and applied probability. Chapman and Hall, London

    MATH  Google Scholar 

  7. Fan Y (1994) Testing the goodness of fit of a parametric density function by kernel method. Econom Theory 10(2):316–356

    Article  MathSciNet  Google Scholar 

  8. Fisher NI, Lee AJ (1981) Nonparametric measures of angular-linear association. Biometrika 68(3):629–636

    Article  MathSciNet  MATH  Google Scholar 

  9. García-Portugués E, Crujeiras RM, González-Manteiga W (2013) Kernel density estimation for directional-linear data. J Multivar Anal 121:152–175

    Article  MathSciNet  MATH  Google Scholar 

  10. García-Portugués E, Barros AMG, Crujeiras RM, González-Manteiga W, Pereira J (2014) A test for directional-linear independence, with applications to wildfire orientation and size. Stoch Environ Res Risk Assess 28(5):1261–1275

    Article  Google Scholar 

  11. García-Portugués E, Crujeiras RM, González-Manteiga W (2015) Central limit theorems for directional and linear data with applications. Stat Sin 25:1207–1229

    MATH  Google Scholar 

  12. García-Portugués E, Van Keilegom I, Crujeiras R, González-Manteiga W (2016) Testing parametric models in linear-directional regression. Scand J Stat 43(4):1178–1191

    Article  MathSciNet  MATH  Google Scholar 

  13. González-Manteiga W, Crujeiras RM (2013) An updated review of goodness-of-fit tests for regression models. Test 22(3):361–411

    Article  MathSciNet  MATH  Google Scholar 

  14. Hall P, Watson GS, Cabrera J (1987) Kernel density estimation with spherical data. Biometrika 74(4):751–762

    Article  MathSciNet  MATH  Google Scholar 

  15. Härdle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21(4):1926–1947

    Article  MathSciNet  MATH  Google Scholar 

  16. Liddell IG, Ord JK (1978) Linear-circular correlation coefficients: some further results. Biometrika 65(2):448–450

    Article  MathSciNet  MATH  Google Scholar 

  17. Mardia KV (1976) Linear-circular correlation coefficients and rhythmometry. Biometrika 63(2):403–405

    Article  MathSciNet  Google Scholar 

  18. Mardia KV, Jupp PE (2000) Directional statistics, 2nd edn. Wiley series in probability and statistics. Wiley, Chichester

    MATH  Google Scholar 

  19. Pearson K (1900) On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philos Mag and J Sci Ser-5 50(302):157–175

    Google Scholar 

  20. Pearson K (1916) On the application of “goodness of fit” tables to test regression curves and theoretical curves used to describe observational or experimental data. Biometrika 11(3):239–261

    Google Scholar 

  21. Rosenblatt M (1975) A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann Stat 3(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao L, Wu C (2001) Central limit theorem for integrated square error of kernel estimators of spherical density. Sci China Ser A 44(4):474–483

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of project MTM2016-76969-P from the Spanish State Research Agency (AEI), Spanish Ministry of Economy, Industry and Competitiveness, and European Regional Development Fund (ERDF). We also thank Eduardo Gil, Eva Gil, Juan J. Gil, and María Angeles Gil for inviting us to contribute to this volume, in memory of Pedro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo García-Portugués .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Portugués, E., Crujeiras, R.M., González-Manteiga, W. (2018). Smoothing-Based Tests with Directional Random Variables. In: Gil, E., Gil, E., Gil, J., Gil, M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-319-73848-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73848-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73847-5

  • Online ISBN: 978-3-319-73848-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics