Skip to main content

Mucus Matters: The Slippery and Complex Surfaces of Fish

  • Chapter
  • First Online:
Functional Surfaces in Biology III

Part of the book series: Biologically-Inspired Systems ((BISY,volume 10))

Abstract

Teleost scales are extremely diverse in morphology, with different categories (cycloid, crenate, spinoid, ctenoid) once used to define major groups of fish. We describe these different classical categories of scales and discuss the structure and potential function of small features of scale morphology such as spines, ctenii, radii, and circuli. Modern techniques now make analysis of scale morphology using three-dimensional quantitative data possible. This ability is crucial because many of the hydrodynamic and protective hypotheses concerning the function of scales are dependent on three-dimensional structure. We discuss different techniques to investigate and image the structure of fish scales and skin, and we highlight gel-based surface profilometry as a new valuable tool for studying fish skin. In addition to bony scales, fish skin is also covered by an epidermis that secretes mucus that can coat the exterior of scales. Fish scales are often studied in isolation with the epidermis removed; here we present topographic, three-dimensional, analyses of fish skin surfaces from seven species with the mucus, epidermis, and relative positions of scales intact. We compare these images qualitatively and quantitatively to the same individuals with the epidermis and mucus removed to show a previously unexplored axis of diversity in fish: how mucus and epidermis interact with scale morphology to create surface texture. The three-dimensional structure of fish skin has important implications for hydrodynamic function during locomotion, but this remains a largely unexplored area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleyev, Y. G. (1977). Nekton. Hague: Dr. W. Junk b.v. Publishers.

    Book  Google Scholar 

  • Anderson, E. J., McGillis, W. R., & Grosenbaugh, M. A. (2001). The boundary layer of swimming fish. The Journal of Experimental Biology, 204, 81–102.

    CAS  PubMed  Google Scholar 

  • Batts, B. S. (1964). Lepidology of the adult pleuronectiform fishes of Puget Sound, Washington. Copeia, 4, 666–673.

    Article  Google Scholar 

  • Beardsley, G. L. (1967). Age, growth, and reproduction of the Dolphin, Coryphaena hippurus, in the Straits of Florida. Copeia, 1967, 441.

    Article  Google Scholar 

  • Bereiter-Hahn, J., & Zylberberg, L. (1993). Regeneration of teleost fish scale. Comparative Biochemistry and Physiology, 105A, 625–641.

    Article  Google Scholar 

  • Bergman, J. N., Lajeunesse, M. J., & Motta, P. J. (2017). Teeth penetration force of the tiger shark Galeocerdo cuvier and sandbar shark Carcharhinus plumbeus. Journal of Fish Biology, 91, 460–472.

    Article  CAS  PubMed  Google Scholar 

  • Bernadsky, G., Sar, N., & Rosenberg, E. (1993). Drag reduction of fish skin mucus: Relationship to mode of swimming and size. Journal of Fish Biology, 42, 797–800.

    Article  Google Scholar 

  • Besseau, L., & Bouligand, Y. (1998). The twisted collagen network of the box-fish scutes. Tissue & Cell, 30, 251–260.

    Article  CAS  Google Scholar 

  • Bone, Q. (1972). Buoyancy and hydrodynamic functions of integument in the Castor oil fish, Ruvettus pretiosus (Pisces: Gempylidae). Copeia, 1972, 78–87.

    Article  Google Scholar 

  • Browning, A., Ortiz, C., & Boyce, M. C. (2013). Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. Journal of the Mechanical Behavior of Biomedical Materials, 19, 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Burdak, V. D. (1986). Morphologie fonctionnelle du tegument ecailleux des poissons. Cybium, 10, 1–128.

    Google Scholar 

  • Casselman, J. M. (1990). Growth and relative size of calcified structures of fish growth and relative size of calcified structures of fish. Transactions of the American Fisheries Society, 119, 673–688.

    Article  Google Scholar 

  • Chintapalli, R. K., Mirkhalaf, M., Dastjerdi, A. K., & Barthelat, F. (2014). Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspiration & Biomimetics, 9, 36005.

    Article  Google Scholar 

  • Daniel, T. L. (1981). Fish mucus: In situ measurements of polymer drag reduction. The Biological Bulletin, 160, 376–382.

    Article  Google Scholar 

  • Daniels, R. A. (1996). Guide to the identification of scales of inland fishes of northeastern North America. New York State Museum Bulletin, 488, 1–93.

    Google Scholar 

  • Dapar, M. L. G., Torres, M. A. J., Fabricante, P. K., & Demayo, C. G. (2012). Scale morphology of the Indian goatfish, Parapeneus indicus (Shaw, 1803) (Perciformes: Mullidae). Advance Envirronmental Biologico, 6, 1426–1432.

    Google Scholar 

  • Descamps, E., Sochacka, A., de Kegel, B., Van Loo, D., Hoorebeke, L., & Adriaens, D. (2014). Soft tissue discrimination with contrast agents using micro-ct scanning. Belgian Journal of Zoology, 144, 20–40.

    Google Scholar 

  • Duro-Royo, J., Zolotovsky, K., Mogas-Soldevila, L., Varshney, S., Oxman, N., Boyce, M. C., & Ortiz, C. (2015). MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armored surfaces. Computer-Aided Design, 60, 14–27.

    Article  Google Scholar 

  • Esmaeili, H. R., Gholamifard, A., Zarei, N., & Arshadi, A. (2012). Scale structure of a cyprinid fish, Garra rossica (Nikol’skii, 1900) using scanning electron microscope (SEM). International Journal of Science, Technology and Society, 4, 487–492.

    Google Scholar 

  • Esteban, M. Á. (2012). An overview of the immunological defenses in fish skin. ISRN Immunology, 2012, 1–29.

    Article  Google Scholar 

  • Fast, M. D., Sims, D. E., Burka, J. F., Mustafa, A., & Ross, N. W. (2002). Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comparative Biochemistry and Physiology A, 132, 645–657.

    Article  CAS  Google Scholar 

  • Ghosh, R., Ebrahimi, H., & Vaziri, A. (2014). Contact kinematics of biomimetic scales. Applied Physics Letters. 105, 233701-1-233701-5.

    Google Scholar 

  • Gignac, P. M., Kley, N. J., Clarke, J. A., Colbert, M. W., Morhardt, A. C., Cerio, D., Cost, I. N., Cox, P. G., Daza, J. D., Early, C. M., et al. (2016). Diffusible iodine-based contrast-enhanced computed tomography (diceCT): An emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. Journal of Anatomy, 228, 889–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes, J. W. (1974). The structure of fish skin I. General organization. Cell and Tissue Research, 149, 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Hill, K. T., Cailliet, G. M., & Radtke, R. L. (1989). A comparative analysis of growth zones in four calcified structures of Pacific Blue Marlin, Makaira nigricans. Fishery Bulletin, 87, 829–843.

    Google Scholar 

  • Huysseune, A., & Sire, J.-Y. (1998). Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. European Journal of Oral Sciences, 106, 437–481.

    Article  PubMed  Google Scholar 

  • Ibañez, A. L., Cowx, I. G., & O’Higgins, P. (2007). Geometric morphometric analysis of fish scales for identifying genera, species, and local populations within the Mugilidae. Canadian Journal of Fisheries and Aquatic Sciences, 1100, 1091–1100.

    Article  Google Scholar 

  • Ibañez, A. L., Cowx, I. G., & O’Higgins, P. (2009). Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zoological Journal of the Linnean Society, 155, 834–844.

    Article  Google Scholar 

  • Jawad, L. A. (2005). Comparative scale morphology and squamation patterns in triplefins (Pisces: Teleostei: Perciformes: Tripterygiidae). Tuhinga, 16, 137–167.

    Google Scholar 

  • Jawad, L. A., & Al-Jufaili, S. M. (2007). Scale morphology of greater lizardfish Saurida tumbil (Bloch, 1795) (Pisces: Synodontidae). Journal of Fish Biology, 70, 1185–1212.

    Article  Google Scholar 

  • Jimenez, J. (2004). Turbulent flows over rough walls. Annual Review of Fluid Mechanics, 36, 173–196.

    Article  Google Scholar 

  • Johal, M. S., Esmaeili, H. R., & Sharma, M. L. (2006). Scale structure of a cobitid fish, Cobitis linea (Heckel, 1849) using different modes of SEM. Current Science, 91, 1464–1466.

    Google Scholar 

  • Johnson, M.K. and Adelson, E.H. (2009). Retrographic sensing for the measurement of surface texture and shape. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 1070–1077.

    Google Scholar 

  • Johnson, M. K., Cole, F., Raj, A., & Adelson, E. H. (2011). Microgeometry capture using an elastomeric sensor. ACM Transactions on Graphics, 30, 46.

    Article  Google Scholar 

  • Lauder, G. V., Wainwright, D. K., Domel, A. G., Weaver, J., Wen, L., & Bertoldi, K. (2016). Structure, biomimetics, and fluid dynamics of fish skin surfaces. Physical Review Fluids, 1, 060502.

    Article  Google Scholar 

  • Li, R., & Adelson, E. H. (2013). Sensing and recognizing surface textures using a GelSight sensor. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1241–1247.

    Google Scholar 

  • Liyan, W. U., Zhibin, J., Yuqiu, S., Wentao, R., Shichao, N., & Zhiwu, H. (2017). Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations. Science China Technological Sciences, 60, 1111–1117.

    Article  Google Scholar 

  • Long, J. H., Hale, M. E., McHenry, M. J., & Westneat, M. W. (1996). Functions of fish skin: Flexural stiffness and steady swimming of longnose gar Lepisosteus osseus. The Journal of Experimental Biology, 199, 2139–2151.

    CAS  PubMed  Google Scholar 

  • Margraf, F. J., & Riley, L. M. (1993). Evaluation of scale shape for identifying spawning stocks of coastal Atlantic striped bass (Morone saxatilis). Fisheries Research, 18, 163–172.

    Article  Google Scholar 

  • Meunier, F. J. (1981). “Twisted plywood” structure and mineralization in the scales of a primitive living fish Amia calva. Tissue & Cell, 13, 165–171.

    Article  CAS  Google Scholar 

  • Meunier, F. J. (2011). The Osteichtyes, from the Paleozoic to the extant time, through histology and palaeohistology of bony tissues. Comptes Rendus Palevol, 10, 347–355.

    Article  Google Scholar 

  • Meunier, F. J., & Brito, P. M. (2004). Histology and morphology of the scales in some extinct and extant teleosts. Cybium, 28, 225–235.

    Google Scholar 

  • Meyer, W., & Seegers, U. (2012). Basics of skin structure and function in elasmobranchs: A review. Journal of Fish Biology, 80, 1940–1967.

    Article  CAS  PubMed  Google Scholar 

  • Motta, P., Habegger, M. L., Lang, A., Hueter, R., & Davis, J. (2012). Scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. Journal of Morphology, 273, 1096–1110.

    Article  PubMed  Google Scholar 

  • Rakers, S., Gebert, M., Uppalapati, S., Meyer, W., Maderson, P., Sell, A. F., Kruse, C., & Paus, R. (2010). “Fish matters”: The relevance of fish skin biology to investigative dermatology. Experimental Dermatology, 19, 313–324.

    Article  PubMed  Google Scholar 

  • Roberts, C. D. (1993). Comparative morphology of spined scales and their phylogenetic significance in the Teleostei. Bulletin of Marine Science, 52, 60–113.

    Google Scholar 

  • Rosen, M. W., & Cornford, N. E. (1971). Fluid friction of fish slimes. Nature, 234, 49–51.

    Article  Google Scholar 

  • Sagong, W., Kim, C., Choi, S., Jeon, W.-P. and Choi, H. (2008). Does the sailfish skin reduce the skin friction like the shark skin? Physics of Fluids, 20, 101510-1-101510-10.

    Google Scholar 

  • Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., & Sastry, T. P. (2008). Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales. International Journal of BIological Macromolecules, 42, 6–9.

    Article  CAS  PubMed  Google Scholar 

  • Schönbörner, A. A., Boivin, G., & Baud, C. A. (1979). The mineralization processes in teleost fish scales. Cell and Tissue Research, 202, 203–212.

    Article  PubMed  Google Scholar 

  • Schultz, M. P., & Flack, K. A. (2007). The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. Journal of Fluid Mechanics, 580, 381.

    Article  Google Scholar 

  • Shephard, K. L. (1994). Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4, 401–429.

    Article  Google Scholar 

  • Sire, J.-Y. (1986). Ontogenic development scales in a cichlid Hemichromis bimaculatus (Cichlidae). Journal of Fish Biology, 28, 713–724.

    Article  Google Scholar 

  • Sire, J.-Y., & Akimenko, M.-A. (2004). Scale development in fish: A review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). The International Journal of Developmental Biology, 48, 233–247.

    Article  CAS  PubMed  Google Scholar 

  • Sire, J.-Y., & Arnulf, I. (1990). The development of squamation in four Teleostean fishes with a survey of the literature. Jpn. Journal of Ichthyology, 37, 133–143.

    Google Scholar 

  • Sire, J., & Arnulf, I. (2000). Structure and development of the ctenial spines on the scales of a teleost fish, the cichlid Cichlasoma nigrofasciatum. Acta Zoologica, 81, 139–158.

    Article  Google Scholar 

  • Sire, J.-Y., & Huysseune, A. (2003). Formation of dermal skeletal and dental tissues in fish: A comparative and evolutionary approach. Biological Reviews of the Cambridge Philosophical Society, 78, 219–249.

    Article  PubMed  Google Scholar 

  • Smits, A. J. (2000). A physical introduction to fluid mechanics. New York: John Wiley and Sons.

    Google Scholar 

  • Song, J., Ortiz, C., & Boyce, M. C. (2011). Threat-protection mechanics of an armored fish. Journal of the Mechanical Behavior of Biomedical Materials, 4, 699–712.

    Article  PubMed  Google Scholar 

  • Sudo, S., Tsuyuki, K., Ito, Y., & Ikohagi, T. (2002). A study on the surface shape of fish scales. Trans. Jpn. Soc. Mechanical Engineering, 45, 1100–1105.

    Google Scholar 

  • Suzuki, T. (1971). Some scale patterns of the scad, Decapterus maruadsi (Temminck et Schlegel), and their variations with body parts. Bulletin of the Japan Sea Regional Fisheries Research Laboratory 23, 1–19.

    Google Scholar 

  • Szewciw, L., Zhu, D., & Barthelat, F. (2017). The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin. Journal of the Mechanical Behavior of Biomedical Materials, 17, 30252–30257.

    Google Scholar 

  • Taylor, H. F. (1916). The structure and growth of the scales of the squeteague and the pigfish as indicative of life history. Fishery Bulletin, 34, 285–330.

    Google Scholar 

  • Thomson, J. M. (1956). Interpretation of the scales of the yellow-eye mullet, Aldrichetta forsteri (Cuvier & Valenciennes) (Mugilidae). Australian Journal of Marine and Freshwater Research, 8, 14–30.

    Google Scholar 

  • Vernerey, F. J., & Barthelat, F. (2010). On the mechanics of fishscale structures. International Journal of Solids and Structures, 47, 2268–2275.

    Article  Google Scholar 

  • Vernerey, F. J., & Barthelat, F. (2014). Skin and scales of teleost fish: Simple structure but high performance and multiple functions. Journal of the Mechanics and Physics of Solids, 68, 66–76.

    Article  Google Scholar 

  • Wainwright, D. K., & Lauder, G. V. (2016). Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus. Zoology, 119, 182–195.

    Article  PubMed  Google Scholar 

  • Wainwright, D. K., Lauder, G. V., & Weaver, J. C. (2017). Imaging biological surface topography in situ and in vivo. Methods in Ecology and Evolution. in press.

    Google Scholar 

  • Walters, V. (1963). The Trachipterid integument and an hypothesis on its hydrodynamic function. Copeia, 1963, 260–270.

    Article  Google Scholar 

  • Wen, L., Weaver, J. C., & Lauder, G. V. (2014). Biomimetic shark skin: Design, fabrication and hydrodynamic function. The Journal of Experimental Biology, 217, 1656–1666.

    Article  PubMed  Google Scholar 

  • Wen, L., Weaver, J. C., Thornycroft, P. J. M., & Lauder, G. V. (2015). Hydrodynamic function of biomimetic shark skin: Effect of denticle pattern and spacing. Bioinspiration & Biomimetics, 10, 066010.

    Article  Google Scholar 

  • Whitear, M. (1970). The skin surface of bony fishes. Journal of Zoology, 4, 437–454.

    Google Scholar 

  • Whitehouse, D. J. (1994). Handbook of surface metrology. Philadelphia: Institute of Physics Publishing.

    Google Scholar 

  • Xu, Z., Parra, D., Gomez, D., Salinas, I., Zhang, Y.-A., von Gersdorff Jørgensen, L., Heinecke, R. D., Buchmann, K., LaPatra, S., & Sunyer, J. O. (2013). Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proceedings of the National Academy of Sciences of the United States of America, 110, 13097–13102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanase, K., & Saarenrinne, P. (2015). Unsteady turbulent boundary layers in swimming rainbow trout. The Journal of Experimental Biology, 218, 1373–1385.

    Article  PubMed  Google Scholar 

  • Zaccone, G., Kapoor, B. G., Fasulo, S., & Ainis, L. (2001). Structural, histochemical and functional aspects of the epidermis of fishes. Advnces in Marine Biology, 40, 253–348.

    Article  Google Scholar 

  • Zylberberg, L., Bereiter-Hahn, J., & Sire, J. Y. (1988). Cytoskeletal organization and collagen orientation in the fish scales. Cell and Tissue Research, 253, 597–607.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge James Weaver for his imaging expertise (in particular for the images in Fig. 10.5), and Kimo Johnson for his assistance with GelSight profilometry measurements. We acknowledge Karsten Hartel and Andrew Williston with assistance in accessing specimens and Dr. Lex Smits for introducing us to k+. The research reported here was supported by ONR MURI Grant N000141410533 monitored by Dr. Bob Brizzolara, HFSP Young Investigators Grant (RGY0067- 2013) to James Weaver, and NSF GRF 2014162421 awarded to D.K.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan K. Wainwright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wainwright, D.K., Lauder, G.V. (2017). Mucus Matters: The Slippery and Complex Surfaces of Fish. In: Gorb, S., Gorb, E. (eds) Functional Surfaces in Biology III. Biologically-Inspired Systems, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-74144-4_10

Download citation

Publish with us

Policies and ethics