Skip to main content

Introduction and Preliminaries

  • Chapter
  • First Online:
Series of Bessel and Kummer-Type Functions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2207))

  • 854 Accesses

Abstract

We begin with a brief outline of special functions and methods, which will be needed in the next chapters. We recall here briefly the Gamma, Beta, Digamma functions, Pochhammer symbol, Bernoulli polynomials and numbers, Bessel, modified Bessel, generalized hypergeometric, Fox–Wright generalized hypergeometric, Hurwitz–Lerch Zeta functions, the Euler–Maclaurin summation formula together with Dirichlet series and Cahen’s formula, Mathieu series, Bessel and Struve differential equations, Fourier-Bessel and Dini series of Bessel functions and fractional differintegral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, and in what follows χ A (x) denotes the indicator function of the set A which equals 1, when x ∈ A, and zero else.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  2. Alexits, Gy.: Convergence Problems of Orthogonal Series. Translated from the German by I. Földes. International Series of Monographs in Pure and Applied Mathematics, vol. 20. Pergamon, New York-Oxford-Paris (1961)

    Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and it Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. Appell, P., Kampé de Fériet, J.: Fonctions Hypergeometrique. Polynomes d’Hermite. Gautier-Villars, Paris (1926)

    Google Scholar 

  5. Ashbaugh, M.S., Benguria, R.D.: Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions. SIAM J. Math. Anal. 24, 557–570 (1993)

    Google Scholar 

  6. Baricz, Á.: Functional inequalities for Galué’s generalized modified Bessel functions. J. Math. Inequal. 1(2), 183–193 (2007)

    Google Scholar 

  7. Baricz, Á.: Generalized Bessel functions of the first kind. Lecture Notes in Mathematics, vol. 1994. Springer, Berlin (2010)

    Google Scholar 

  8. Nielsen, N.: Flertydige Udviklinger efter Cylinderfunktioner. Nyt Tidsskrift X B, 73–81 (1899)

    Google Scholar 

  9. Nielsen, N.: Note sur les développements schloemilchiens en série de fonctions cylindriques. Oversigt K. Danske Videnskabernes Selskabs 661–665 (1899)

    Google Scholar 

  10. Nielsen, N.: Sur le développement de zéro en fonctions cylindriques. Math. Ann. LII, 582–587 (1899)

    Google Scholar 

  11. Nielsen, N.: Note supplémentaire relative aux développements schloemilchiens en série de fonctions cylindriques. Oversigt K. Danske Videnskabernes Selskabs 55–60 (1900)

    Google Scholar 

  12. Nielsen, N.: Recherches sur les séries de fonctions cylindriques dues á C. Neumann et W. Kapteyn. Ann. Sci. Éc. Norm. Super. 18, 39–75 (1901)

    Google Scholar 

  13. Baricz, Á., Pogány, T.K.: Integral representations and summations of modified Struve function. Acta Math. Hung. 141(3), 254–281 (2013)

    Google Scholar 

  14. Baricz, Á., Pogány, T.K.: Properties of the product of modified Bessel functions. In: Milovanović, G.V., Rassias, M.Th. (eds.) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 809–820. Springer, Berlin (2014). In Honor of Hari M. Srivastava

    Google Scholar 

  15. Baricz, Á., Pogány, T.K.: Turán determinants of Bessel functions. Forum Math. 26(1), 295–322 (2014)

    Google Scholar 

  16. Baricz, Á., Jankov, D., Pogány, T.K.: Integral representation of first kind Kapteyn series. J. Math. Phys. 52(4), Art. 043518, pp. 7 (2011)

    Google Scholar 

  17. Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of Bessel functions I ν , Y ν and K ν . Proc. Am. Math. Soc. 140(3), 951–960 (2012)

    Google Scholar 

  18. Bernoulli, D.: Demonstrationes theorematum suorum de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae. Commentarii Academiae Scientiarum Imperialis Petropolitanae 7, 162–173 (1734)

    Google Scholar 

  19. Bowman, F.: Introduction to Bessel Functions. Dover, New York (1958)

    Google Scholar 

  20. Cahen, E.: Sur la fonction ζ(s) de Riemann et sur des fontions analogues. Ann. Sci. l’École Norm. Sup. Sér. Math. 11, 75–164 (1894)

    Google Scholar 

  21. Chessin, A.S.: Sur l’équation de Bessel avec second membre. Compt. Rend. 135, 678–679 (1902)

    Google Scholar 

  22. Chessin, A.S.: Sur une classe d’équations différentielles réductibles a l’équation de Bessel. Compt. Rend. 136, 1124–1126 (1903)

    Google Scholar 

  23. Cerone, P., Lenard, C.T.: On integral forms of generalized Mathieu series. J. Inequal. Pure Appl. Math. 4(5), Art. 100, 1–11 (2003)

    Google Scholar 

  24. Cvijović, D.: New integral representation of the polylogarithm function. Proc. R. Soc. A 463, 897–905 (2007)

    Google Scholar 

  25. Davis, P.J.: Leonhard Euler’s integral: a historical profile of the Gamma function. Am. Math. Mon. 66(10), 849–869 (1959)

    Google Scholar 

  26. Delerue, P.: Sur le calcul symbolic à n variables et fonctions hyperbesséliennes II. Annales Soc. Sci. Bruxelle Ser. 1 3, 229–274 (1953)

    Google Scholar 

  27. Dimovski, I.H., Kiryakova, V.S.: Generalized Poisson transmutations and corresponding representations of hyper-Bessel functions. C. R. Acad. Bulg. Sci. 39(10), 29–32 (1986)

    Google Scholar 

  28. Dini, U.: Serie di Fourier e altre rappresentazioni analitiche delle funzioni di una variabile reale. Tipografia T. Nistri e C., Pisa (1880)

    Google Scholar 

  29. Dominici, D.: On Taylor series and Kapteyn series of the first and second type. J. Comput. Appl. Math. 236, 39–48 (2011)

    Google Scholar 

  30. Draščić Ban, B.: Mathieu Type Series and Dirichlet Series. Ph.D. Dissertation, University of Zagreb, Zagreb (2009) (in Croatian)

    Google Scholar 

  31. Dutka, J.: On the early history of Bessel functions. Arch. Hist. Exact Sci. 49(2), 105–134 (1995)

    Google Scholar 

  32. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York, Toronto, London (1953)

    Google Scholar 

  33. Filon, L.N.G.: On the expansion of polynomials in series of functions. Proc. Lond. Math. Soc. (Ser. 2). IV, 396–430 (1907)

    Google Scholar 

  34. Fourier, J.B.J.: La Théorie Analytique de la Chaleur. Chez Firmin Didot, pere et fils (1822)

    Google Scholar 

  35. Galué, L.: A generalized Bessel function. Integral Transforms Spec. Funct. 14, 395–401 (2003)

    Google Scholar 

  36. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and it Applications, vol. 35. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  37. Gegenbauer, L.B.: Über die Bessel’schen Funktionen. Wiener Sitzungsberichte 69, 1–11 (1874)

    Google Scholar 

  38. Gegenbauer, L.B.: Zur Theorie der Bessel’schen Funktionen. Wiener Sitzungsberichte 75(2), 218–222 (1877)

    Google Scholar 

  39. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, CA (2000)

    Google Scholar 

  40. Guess, F., Proschan, F.: Mean residual life: theory and applications. In: Krishnaiah, P.R., Rao, C.R. (eds.) Quality Control and Reliability. Handbook of Statistics, vol. 7, pp. 215–224. North-Holland, Amsterdam (1988)

    Google Scholar 

  41. Hankel, H.: Die Cylinderfunctionen erster und zweiter Art (Dec. 15, 1868). Math. Ann 1, 467–501 (1869)

    Google Scholar 

  42. Hankel, H.: Die Fourier’schen Reihen und Integrale für Cylinderfunctionen. Math. Ann. VIII, 471–490 (1875)

    Google Scholar 

  43. Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Cambridge University Press, Cambridge (1915)

    Google Scholar 

  44. Harnack, A.: Ueber die Darstellung einer willkürlichen Function durch die Fourier–Bessel’schen Functionen. Math. Ann. XXXV, 41–62 (1890); Abgedruckt aus den Leipziger Sitzungsberichten XXXI, 191–214 (1887)

    Google Scholar 

  45. Hille, E.: On Laguerre’s series. First note. Proc. Natl. Acad. Sci. 12(4), 261–265 (1926)

    Google Scholar 

  46. Hille, E.: On Laguerre’s series. Third note. Proc. Natl. Acad. Sci. 12(5), 348–352 (1926)

    Google Scholar 

  47. http://functions.wolfram.com/HypergeometricFunctions/HypergeometricPFQRegularized/02/ (2016). Accessed 31 Oct 2016

  48. http://functions.wolfram.com/HypergeometricFunctions/HypergeometricPFQRegularized/04/02/ (2016). Accessed 31 Oct 2016

  49. Ivanov, V.K.: Higher-dimensional generalizations of the Euler summation formula. Izv. Vysš. Učebn. Zaved. Matematika 6(37), 72–80 (1963) (in Russian)

    Google Scholar 

  50. Jankov, D., Pogány, T.K.: Integral representation of Schlömilch series. J. Class. Anal. 1(1), 75–84 (2012)

    Google Scholar 

  51. Jankov, D., Pogány, T.K., Süli, E.: On the coefficients of Neumann series of Bessel functions. J. Math. Anal. Appl. 380(2), 628–631 (2011)

    Google Scholar 

  52. Jankov Maširević, D., Parmar, R.K., Pogány, T.K.: (p, q)–extended Bessel and modified Bessel functions of the first kind. Results Math. 72(1–2), 617–632 (2017)

    Google Scholar 

  53. Kaczmarz, S., Steinhaus, H.: Theorie der Orthogonalreihen. Monografie Matematyczne 6. Seminarium Matematyczne Uniwersytetu Warszawskiego; Instytut Matematyczny PAN, Warszawa, Lwow (1935)

    Google Scholar 

  54. Kapteyn, W.: Recherches sur les functions de Fourier–Bessel. Ann. Sci. de l’École Norm. Sup. 3(10), 91–120 (1893)

    Google Scholar 

  55. Kapteyn, W.: On an expansion of an arbitrary function in a series of Bessel functions. Messenger Math. 35, 122–125 (1906)

    Google Scholar 

  56. Karamata, J.: Theory and Applications of Stieltjes integral. Srpska Akademija Nauka, Posebna izdanja CLIV, Matematički institut, Knjiga I, Beograd (1949) (in Serbian)

    Google Scholar 

  57. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies, vol. 204. Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York (2006)

    Google Scholar 

  58. Kiryakova, V.S.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematical Series, vol. 301. Longman Group UK Ltd., Harlow (1994)

    Google Scholar 

  59. Kiryakova, V.S., Hernandez–Suarez, V.: Bessel-Clifford third order differential operator and corresponding Laplace type integral transform. Diss. Math. 340, 143–161 (1995)

    Google Scholar 

  60. Ključancev, M.I.: Singular differential operators with (r1) parameters and Bessel functions of vector index. Sibirsk. Mat. Zh. 24(3), 47–62 (1983) (In Russian)

    Google Scholar 

  61. Krasikov, I.: Uniform bounds for Bessel functions. J. Appl. Anal. 12(1), 83–91 (2006)

    Google Scholar 

  62. Krasikov, I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014)

    Google Scholar 

  63. Krasikov, I.: On the Bessel function J ν (x) in the transition region. LMS J. Comput. Math. 17(1), 273–281 (2014)

    Google Scholar 

  64. Landau, L.: Monotonicity and bounds on Bessel functions. In: Warchall, H. (ed.) Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory. Berkeley, CA (June 11–13, 1999), pp. 147–154 (2000). Electron. J. Differential Equations 4, Southwest Texas State University, San Marcos, TX (2000)

    Google Scholar 

  65. Lin, S.D., Srivastava, H.M.: Some families of Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 154, 725–733 (2004)

    Google Scholar 

  66. Lin, S.D., Shyu, J.C., Nishimoto, K., Srivastava, H.M.: Explicit solutions of some general families of ordinary and partial differential equations associated with the Bessel equation by means of fractional calculus. J. Fract. Calc. 25, 33–45 (2004)

    Google Scholar 

  67. Lin, S.D., Ling, W.C., Nishimoto, K., Srivastava, H.M.: A simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 49(9–10), 1487–1498 (2005)

    Google Scholar 

  68. Lorch, L., Szego, P.: Bounds and monotonicities for the zeros of derivatives of ultraspherical Bessel functions. SIAM J. Math. Anal. 25(2), 549–554 (1994)

    Google Scholar 

  69. Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York-Toronto-London (1962)

    Google Scholar 

  70. Mathieu, E.L.: Traité de Physique Mathématique. Theory de l’Elasticité des Corps Solides, vol. VI-VII. Gauthier–Villars, Paris (1890)

    Google Scholar 

  71. Maximon, L.C.: On the representation of indefinite integrals containing Bessel functions by simple Neumann series. Proc. Am. Math. Soc. 7(6), 1054–1062 (1956)

    Google Scholar 

  72. Miller, A.R.: On Mellin transform of products of Bessel and generalized hypergeometric functions. J. Comput. Appl. Math. 85, 271–286 (1997)

    Google Scholar 

  73. Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin-Heidelberg-New York (1970)

    Google Scholar 

  74. Mortici, C.: Accurate approximations of the Mathieu series. Math. Comput. Model. 53(5–6), 909–914 (2011)

    Google Scholar 

  75. Müller, C.: Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie. Abh. Math. Sem. Univ. Hamburg 19(2), 4162 (1954)

    Google Scholar 

  76. Nadarajah, S., Kotz, S.: A generalized Planck distribution. Test 15(2), 361–374 (2006)

    Google Scholar 

  77. Neumann, C.G.: Theorie der Besselschen Funktionen. B.G. Teubner, Leipzig (1867)

    Google Scholar 

  78. Nielsen, N.: Recherches sur une classe de séries infinies analogue á celle de M. W. Kapteyn. Oversigt K. Danske Videnskabernes Selskabs 127–146 (1901)

    Google Scholar 

  79. Nielsen, N.: Sur une classe de séries infinies analogues á celles de Schlömilch selon les fonctions cylindriques. Ann. di Mat. VI(3), 301–329 (1901)

    Google Scholar 

  80. Nishimoto, K.: Fractional Calculus, vols. I, II, III, IV, V. Descartes Press, Koriyama (1984, 1987, 1989, 1991 and 1996)

    Google Scholar 

  81. Nishimoto, K.: An Essence of Nishimoto’s Fractional Calculus, Calculus of the 21st Century: Integrations and Differentiations of Arbitrary Order. Descartes Press, Koriyama (1991)

    Google Scholar 

  82. Olenko, A.Ya.: Upper bound on \(\sqrt {x}J_\nu (x)\) and its applications. Integral Transforms Spec. Funct. 17(6), 455–467 (2006)

    Google Scholar 

  83. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. NIST and Cambrigde University Press, Cambridge (2010)

    Google Scholar 

  84. Pathak, R.S., Singh, O.P.: Finite Hankel transforms of distributions. Pac. J. Math. 99(2), 439–458 (1982)

    Google Scholar 

  85. Pogány, T.K.: Integral representation of a series which includes the Mathieu a-series. J. Math. Anal. Appl. 296(1), 309–313 (2004)

    Google Scholar 

  86. Pogány, T.K.: Integral representation of Mathieu (a, λ)-series. Integral Transforms Spec. Funct. 16(8), 685–689 (2005)

    Google Scholar 

  87. Pogány, T.K.: Multiple Euler–McLaurin summation formula. Mat. Bilten 29, 37–40 (2005)

    Google Scholar 

  88. Pogány, T.K.: Further results on generalized Kapteyn-type expansions. Appl. Math. Lett. 22(2), 192–196 (2009)

    Google Scholar 

  89. Pogány, T.K., Parmar, R.K.: On p–extended Mathieu series. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. (2018) (to appear)

    Google Scholar 

  90. Pogány, T.K., Srivastava, H.M.: Some Mathieu-type series associated with the Fox-Wright function. Comput. Math. Appl. 57, 127–140 (2009)

    Google Scholar 

  91. Pogány, T.K., Süli, E.: Integral representation for Neumann series of Bessel functions. Proc. Am. Math. Soc. 137(7), 2363–2368 (2009)

    Google Scholar 

  92. Pogány, T.K., Tomovski, ž.: On multiple generalized Mathieu series. Integral Transforms Spec. Funct. 17(4), 285–293 (2006)

    Google Scholar 

  93. Pogány, T.K., Tomovski, ž.: On Mathieu-type series whose terms contain generalized hypergeometric function p F q and Meijer’s G-function. Math. Comput. Model. 47(9–10), 952–969 (2008)

    Google Scholar 

  94. Pogány, T.K., Srivastava, H.M., Tomovski, ž.: Some families of Mathieu a–series and alternating Mathieu a-series. Appl. Math. Comput. 173(1), 69–108 (2006)

    Google Scholar 

  95. Qi, F.: Inequalities for Mathieu series. RGMIA Res. Rep. Coll. 4(2) Art. 3, 187–193 (2001)

    Google Scholar 

  96. Qi, F.: An integral expression and some inequalities of Mathieu type series. Rostock Math. Kolloq. 58(2), 37–46 (2004)

    Google Scholar 

  97. Rainville, E.D.: Special Functions. Macmillan, New York (1960)

    Google Scholar 

  98. Rayleigh, J.W.S.: On a Physical Interpretation of Schlömilch’s Theorem in Bessel’s Functions. Philos. Mag. 6, 567–571 (1911)

    Google Scholar 

  99. Saxena, R.K., Pogány, T.K., Saxena, R., Jankov, D.: On generalized Hurwitz-Lerch Zeta distributions occurring in statistical inference. Acta Univ. Sapientiae Math. 3(1), 43–59 (2011)

    Google Scholar 

  100. Schläfli, L.: Ueber die Convergenz der Entwicklung einer arbiträren Function f(x) nach den Bessel’schen Functionen \( \overset {\,\,\,a}{J}(\beta _1 x),\, \overset {\,\,\,a}{J}(\beta _2 x),\, \overset {\,\,\,a}{J}(\beta _3 x),\cdot \cdot \cdot \cdot \cdot ,\) wo β 1, β 2, β 3, … die positiven Wurzeln der Gleichung \(\overset {\,\,\,a}J(\beta )=0\) vorstellen. Math. Ann. 10, 137–142 (1876)

    Google Scholar 

  101. Schlömilch, O.X.: Über die Bessel’schen Function. Zeitschrift für Math. und Phys. II, 137–165 (1857)

    Google Scholar 

  102. Sitnik, S.M.: Inequalities for Bessel functions. Dokl. Akad. Nauk 340(1), 29–32 (1995) (in Russian)

    Google Scholar 

  103. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  104. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht, Boston, London (2001)

    Google Scholar 

  105. Srivastava, H.M., Daoust, M.C.: On Eulerian integrals associated with Kampé de Fériet’s function. Publ. Inst. Math. (Beograd) (N.S.) 9(23), 199–202 (1969)

    Google Scholar 

  106. Srivastava, H.M., Daoust, M.C.: A note on the convergence of Kampé de Fériet double hypergeometric series. Math. Nachr. 53, 151–159 (1972)

    Google Scholar 

  107. Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd./Halsted Press [Wiley], Chichester/New York (1985)

    Google Scholar 

  108. Srivastava, H.M., Panda, R.: An integral representation for the product of two Jacobi polynomials. J. Lond. Math. Soc. (2) 12, 419–425 (1976)

    Google Scholar 

  109. Srivastava, H.M., Pogány, T.K.: Inequalities for a unified family of Voigt functions in several variables. Russ. J. Math. Phys. 14(2), 194–200 (2007)

    Google Scholar 

  110. Srivastava, H.M., Tomovski, ž.: Some problems and solutions involving Mathieu’s series and its generalizations. J. Inequal. Pure Appl. Math. 5(2) Art. 45, 1–13 (2004)

    Google Scholar 

  111. Srivastava, H.M., Saxena, R.K., Pogány, T.K., Saxena, R.: Integral and computational representations of the extended Hurwitz–Lerch Zeta function. Integral Trasforms Spec. Funct. 22, 487–506 (2011)

    Google Scholar 

  112. Srivastava, H.M., Jankov, D., Pogány, T.K., Saxena, R.K.: Two-sided inequalities for the extended Hurwitz–Lerch Zeta function. Comput. Math. Appl. 62(1), 516–522 (2011)

    Google Scholar 

  113. Stanković, B.: On the function of E. M. Wright. Publ. Inst. Math. (Beograd) (N.S.) 10(24), 113–124 (1970)

    Google Scholar 

  114. Struve, H.: Beitrag zur Theorie der Diffraction an Fernröhren. Ann. Physik Chem. 17, 1008–1016 (1882)

    Google Scholar 

  115. Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. I: Calcul differentiel I. Applications. Gauthier-Villars, Paris (1893)

    Google Scholar 

  116. Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. II: Calcul differentiel I. Applications. Applications. Gauthier-Villars, Paris (1896)

    Google Scholar 

  117. Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. III: Calcul integral I. Gauthier-Villars, Paris (1898)

    Google Scholar 

  118. Tannery, J., Molk, N.: Éléments de la théorie des fonctions elliptiques. Vol. IV: Calcul integral II. Gauthier-Villars, Paris (1902)

    Google Scholar 

  119. Tautz, R.C., Lerche, I., Dominici, D.: Methods for summing general Kapteyn series. J. Phys. A 44, 385202, 14 pp. (2011)

    Google Scholar 

  120. Temme, N.M.: Special Functions. An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)

    Google Scholar 

  121. Tolstov, G.P.: Fourier Series. Second English translation. Translated from the Russian and with a preface by Richard A. Silverman. Dover, New York (1976)

    Google Scholar 

  122. Tričković, S.B., Stanković, M.S., Vidanović, M.V., Aleksić, V.N.: Integral transforms and summation of some Schlömilch series. In: Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications (Niška Banja, Serbia). Mat. Vesnik 54, 211–218 (2002)

    Google Scholar 

  123. von Lommel, E.C.J.: Studien über die Bessel’schen Functionen. B. G. Teubner, Leipzig (1868)

    Google Scholar 

  124. Wang, P.Y.: Solutions of Some Certain Classes of Differential Equations by Means of Fractional Calculus. Ph.D. Dissertation, Department of Applied Mathematics, Chung Yuan Christian University Chung-Li, Taiwan (2006)

    Google Scholar 

  125. Wang, P.Y., Lin, S.D., Srivastava, H.M.: Remarks on a simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications. Comput. Math. Appl. 51(1), 105–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  126. Wang, P.Y., Lin, S.D., Tu, S.T.: A survey of fractional-calculus approaches to the solutions of the Bessel differential equation of general order. Appl. Math. Comput. 187(1), 544–555 (2007)

    MathSciNet  MATH  Google Scholar 

  127. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  128. Wilkins Jr., J.E.: Neumann series of Bessel functions. Trans. Am. Math. Soc. 64, 359–385 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  129. Wright, E.M.: The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. (2) 38, 257–270 (1934)

    Google Scholar 

  130. Yen, C.E., Lin, M.L., Nishimoto, K.: An integral form for a generalized Zeta function. J. Fract. Calc. 23, 99–102 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baricz, Á., Jankov Maširević, D., Pogány, T.K. (2017). Introduction and Preliminaries. In: Series of Bessel and Kummer-Type Functions. Lecture Notes in Mathematics, vol 2207. Springer, Cham. https://doi.org/10.1007/978-3-319-74350-9_1

Download citation

Publish with us

Policies and ethics