Skip to main content

Schlömilch Series

  • Chapter
  • First Online:
Series of Bessel and Kummer-Type Functions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2207))

  • 881 Accesses

Abstract

This chapter is devoted to the study of integral representations of Schlömilch series built by Bessel functions of the first kind and modified Bessel functions of the second kind. Closed expressions for some special Schlömilch series together with their connection to Mathieu series are also investigated. The chapter ends with an integral representation formula for number theoretical summation by Popov, which also covers the theta-transform identity coming from functional equation for the Epstein Zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Moreover, Berndt et al. extended (4.7) to all 2q > k − 3, compare [35, Theorem 2.1].

  2. 2.

    Actually, A p,q (γ) is the Laplace transform of \(x \mapsto x^{-1} \mathrm {e}^{-\frac px} J_\nu (\gamma x)\) at the argument q.

  3. 3.

    The usually used integral expression (2.4) for the Bessel function in the summands of (4.41) results in

    $$\displaystyle \begin{aligned} \mathfrak S_{k, q}(x) = \frac{2 (\pi x)^{\frac{k}{2} + q}}{ \sqrt{\pi}\,\varGamma\left( \frac{k+1}2 + q\right)} \, \int_0^1 (1-t^2)^{\frac{k-1}2 + q}\, \sum_{n \geq 1} r_k(n)\,\cos\left(2\pi t \sqrt{nx}\right)\, \mathrm{d}t.\end{aligned}$$

    On the other hand, also by Walfisz was found that [326, p. 40]

    $$\displaystyle \begin{aligned} \sum_{j = 1}^n r_k(n) = cn^{\frac{k}{2}} + \mathscr O\big(n^{\frac{k-1}2}\big)\, ,\end{aligned}$$

    being c an absolute constant. All together imply that the inner sum diverges in a neighborhood of t = 0, therefore the integral diverges too.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  2. Al-Jarrah, A., Dempsey, K.M., Glasser, M.L.: Generalized series of Bessel functions. J. Comput. Appl. Math. 143, 1–8 (2002)

    Google Scholar 

  3. Berndt, B.C., Kim, S.: Identities for logarithmic means: a survey. In: Alaca, A., Alaca, Ş., Williams, K.S. (eds.) Advances in the Theory of Numbers. Proceedings of the Thirteenth Conference of the Canadian Number Theory Association, Carleton University, Ottawa, ON (June 16–20, 2014). Fields Institute Communications, vol. 77. Fields Institute for Research in Mathematical Sciences, Toronto, ON (2015)

    Google Scholar 

  4. Berndt, B.C., Zaharescu, A.: Weighted divisor sums and Bessel function series. Math. Ann. 335(2), 249–283 (2006)

    Google Scholar 

  5. Berndt, B.C., Kim, S., Zaharescu, A.: Weighted divisor sums and Bessel function series II. Adv. Math. 229(3), 2055–2097 (2012)

    Google Scholar 

  6. Berndt, B.C., Kim, S., Zaharescu, A.: Weighted divisor sums and Bessel function series IV. Ramanujan J. 29(1–3), 79–102 (2012)

    Google Scholar 

  7. Berndt, B.C., Kim, S., Zaharescu, A.: Weighted divisor sums and Bessel function series III. J. Reine Angew. Math. 683, 67–96 (2013)

    Google Scholar 

  8. Berndt, B.C., Kim, S., Zaharescu, A.: Weighted divisor sums and Bessel function series V. J. Approx. Theory 197, 101–114 (2015)

    Google Scholar 

  9. Berndt, B.C., Dixit, A., Kim, S., Zaharescu, A.: On a theorem of A. I. Popov on sum of squares. Proc. Amer. Math. Soc. 145(9), 3795–3808 (2017). https://doi.org/10.1090/proc/13547

    Google Scholar 

  10. Bondarenko, V.F.: Efficient summation of Schlömilch series of cylindrical functions. USSR Comput. Math. Math. Phys. 31(7), 101–104 (1991)

    Google Scholar 

  11. Chandrasekharan, K., Narasimhan, R.: Hecke’s functional equation and arithmetical identities. Ann. Math. 74, 1–23 (1961)

    Google Scholar 

  12. Chaudhry, M.A., Qadir, A., Boudjelkha, M.T., Rafique, M., Zubair, S.M.: Extended Riemann zeta functions. Rocky Mt. J. Math. 31(4), 1237–1263 (2001)

    Google Scholar 

  13. Cerone, P., Lenard, C.T.: On integral forms of generalized Mathieu series. J. Inequal. Pure Appl. Math. 4(5), Art. 100, 1–11 (2003)

    Google Scholar 

  14. Coates, C.V.: Bessel’s functions of the second order. Q. J. XXI, 183–192 (1886)

    Google Scholar 

  15. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)

    Google Scholar 

  16. Epstein, P.: Zur Theorie allgemeiner Zetafunktionen I. Math. Ann. 56, 614–644 (1903)

    Google Scholar 

  17. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York, Toronto, London (1953)

    Google Scholar 

  18. Filon, L.N.G.: On the expansion of polynomials in series of functions. Proc. Lond. Math. Soc. (Ser. 2). IV, 396–430 (1907)

    Google Scholar 

  19. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, CA (2000)

    Google Scholar 

  20. Hardy, G.H., Wright, E.M.: In: Heath-Brown, D.R., Silverman, J.H. (eds.) An Introduction to the Theory of Numbers, 6th edn. Oxford Science Publications/Clarendon Press, Oxford/London (2008). “The Function r(n),” “Proof of the Formula for r(n)”, “The Generating Function of r(n)”, “The Order of r(n)”, and “Representations by a Larger Number of Squares.” §16.9, 16.10, 17.9, 18.7, and 20.13, pp. 241–243, 256–258, 270–271, 314–315

    Google Scholar 

  21. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea Publishing Company, New York (1952)

    Google Scholar 

  22. http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/20/01/02/ (2016). Accessed 31 Oct 2016

  23. http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/20/01/02/ (2016). Accessed 31 Oct 2016

  24. http://functions.wolfram.com/ElementaryFunctions/Exp/23/01/ (2016). Accessed 31 Oct 2016

  25. Jankov, D., Pogány, T.K.: Integral representation of Schlömilch series. J. Class. Anal. 1(1), 75–84 (2012)

    Google Scholar 

  26. Jankov Maširević, D.: Summations of Schlömilch series containing modified Bessel function of the second kind terms. Integral Transforms Spec. Funct. 26(4), 273–281 (2015)

    Google Scholar 

  27. Jankov Maširević, D., Pogány, T.K.: p-extended Mathieu series from the Schlömilch series point of view. Vietnam J. Math. 45(4), 713–719 (2017)

    Google Scholar 

  28. Koshliakov, N.S.: Sum-formulae containing numerical functions. J. Soc. Phys. Math. Leningr. 2, 53–76 (1928)

    Google Scholar 

  29. Lorch, L., Szego, P.: Closed expressions for some infinite series of Bessel and Struve functions. J. Math. Anal. Appl. 122, 47–57 (1987)

    Google Scholar 

  30. Miller, A.R.: m-dimensional Schlömilch series. Can. Math. Bull. 38(3), 347–351 (1995)

    Google Scholar 

  31. Miller, A.R.: On certain Schlömilch-type series. J. Comput. Appl. Math. 80, 83–95 (1997)

    Google Scholar 

  32. Milovanović, G.V.; Pogány, T.K.: New integral forms of generalized Mathieu series and related applications. Appl. Anal. Discrete Math. 7(1), 180–192 (2013)

    Google Scholar 

  33. Murio, D.A.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Probl. Sci. Eng. 17, 229–243 (2009)

    Google Scholar 

  34. Nielsen, N.: Flertydige Udviklinger efter Cylinderfunktioner. Nyt Tidsskrift X B, 73–81 (1899)

    Google Scholar 

  35. Nielsen, N.: Note sur les développements schloemilchiens en série de fonctions cylindriques. Oversigt K. Danske Videnskabernes Selskabs 661–665 (1899)

    Google Scholar 

  36. Nielsen, N.: Sur le développement de zéro en fonctions cylindriques. Math. Ann. LII, 582–587 (1899)

    Google Scholar 

  37. Nielsen, N.: Note supplémentaire relative aux développements schloemilchiens en série de fonctions cylindriques. Oversigt K. Danske Videnskabernes Selskabs 55–60 (1900)

    Google Scholar 

  38. Nielsen, N.: Recherches sur une classe de séries infinies analogue á celle de M. W. Kapteyn. Oversigt K. Danske Videnskabernes Selskabs 127–146 (1901)

    Google Scholar 

  39. Nielsen, N.: Sur une classe de séries infinies analogues á celles de Schlömilch selon les fonctions cylindriques. Ann. di Mat. VI(3), 301–329 (1901)

    Google Scholar 

  40. Nielsen, N.: Handbuch der Theorie der Cylinderfenktionen. Teubner, Leipzig (1904)

    Google Scholar 

  41. Pogány, T.K., Parmar, R.K.: On p–extended Mathieu series. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. (2018) (to appear)

    Google Scholar 

  42. Popov, A.: On some summation formulas. Bull. Acad. Sci. LURSS 7, 801802 (1934). (in Russian)

    Google Scholar 

  43. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 1. Elementary Functions. Gordon and Breach Science Publishers, New York (1986)

    Google Scholar 

  44. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 2. Special Functions. Gordon and Breach Science Publishers, New York (1986)

    Google Scholar 

  45. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. Direct Laplace Transforms, vol. 4. Gordon and Breach Science Publishers, New York (1992)

    Google Scholar 

  46. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988).

    Google Scholar 

  47. Rawn, M.D.: On the summation of Fourier and Bessel series. J. Math. Anal. Appl. 193, 282–295 (1995)

    Google Scholar 

  48. Rayleigh, J.W.S.: On a Physical Interpretation of Schlömilch’s Theorem in Bessel’s Functions. Philos. Mag. 6, 567–571 (1911)

    Google Scholar 

  49. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York (1993)

    Google Scholar 

  50. Schläfli, L.: Sopra un teorema di Jacobi recato a forma piu generale ed applicata alia funzione cilindrica. Ann. di Mat. (2) 5, 199–205 (1873)

    Google Scholar 

  51. Schlömilch, O.X.: Note sur la variation des constantes arbitraires d’une intégrale définie. J. Math. XXXIII, 268–280 (1846)

    Google Scholar 

  52. Schlömilch, O.X.: Über die Bessel’schen Function. Zeitschrift für Math. und Phys. II, 137–165 (1857)

    Google Scholar 

  53. Sousa, E.: How to approximate the fractional derivative of order 1 < α < 2. In: Podlubny, I., Vinagre Jara, B.M., Chen, Y.Q., Feliu Batlle, V., Tejado Balsera, I. (eds.) Proceedings of the 4th IFAC Workshop Fractional Differentiation and Its Applications, Art. No. FDA10–019 (2010)

    Google Scholar 

  54. Srivastava, H.M., Tomovski, ž.: Some problems and solutions involving Mathieu’s series and its generalizations. J. Inequal. Pure Appl. Math. 5(2) Art. 45, 1–13 (2004)

    Google Scholar 

  55. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1948)

    Google Scholar 

  56. Tošić, D.: Some series of a product of Bessel functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715, 105–110 (1980)

    Google Scholar 

  57. Tričković, S.B., Stanković, M.S., Vidanović, M.V., Aleksić, V.N.: Integral transforms and summation of some Schlömilch series. In: Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications (Niška Banja, Serbia). Mat. Vesnik 54, 211–218 (2002)

    Google Scholar 

  58. Twersky, V.: Elementary function representations of Schlömilch series. Arch. Ration. Mech. Anal. 8, 323332 (1961)

    Google Scholar 

  59. Walfisz, A.: Gitterpunkte in mehrdimensionalen Kugeln. Monografie Matematyczne, vol. 33, Państwowe Wydawnictwo Naukowe, Warsaw (1957)

    Google Scholar 

  60. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baricz, Á., Jankov Maširević, D., Pogány, T.K. (2017). Schlömilch Series. In: Series of Bessel and Kummer-Type Functions. Lecture Notes in Mathematics, vol 2207. Springer, Cham. https://doi.org/10.1007/978-3-319-74350-9_4

Download citation

Publish with us

Policies and ethics