Skip to main content

Value-Added Products from Wastes Using Extremophiles in Biorefineries: Process Modeling, Simulation, and Optimization Tools

  • Chapter
  • First Online:
Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power

Abstract

This chapter provides an overview of value-added production using extremophiles as well as the advantages and challenges for process development in a biorefinery concept. The chapter then shows a modeling framework that includes metabolic flux modeling, growth kinetics, and bioreactor models as well as process simulation. The model results are the basis for optimization, economic analysis, and life cycle assessment. The tools are applied to the production of poly-3-hydroxybutyrate (PHB) by using the halophilic bacteria Halomonas sp. The results highlighted the importance of relating models at the various scales and to look at the whole process picture to optimize the economic and environmental performances of the resulting biorefinery process. In the optimized process, the minimum PHB selling price was $7.05 per kg and the reduction in greenhouse gas emissions was 90%, with 0.708 kg CO-eq per kg of PHB. These results showed the potential for using halophilic bacteria to make PHB production competitive in terms of economics and environmental impacts. This also shows how extremophile processing will play a key role in making biorefineries more profitable and sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

CHP:

Combined heat and power

CSTR:

Continuously stirred tank reactor

GHG:

Greenhouse gas

GWP:

Global warming potential

LCA:

Life cycle assessment

MFA:

Metabolic flux analysis

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenosine dinucleotide phosphate

PHB:

Poly-3-hydroxybutyrate

PLA:

Polylactic acid

SDS:

Sodium dodecyl sulfonate

References

  • Aburto J, Martínez T, Murrieta F (2008) Evaluación técnica-económica de la producción de bioetanol a partir de residuos lignocelulósicos. Tecnología, Ciencia y Educación 23(1):23–30

    Google Scholar 

  • Barrera I, Amezcua-Allieri MA, Estupiñan L, Martínez T, Aburto J (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem Eng Res Des 107:91–101

    Article  CAS  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  PubMed  CAS  Google Scholar 

  • Bosma EF, van der Oost J, de Vos WM, van Kranenburg R (2013) Sustainable production of bio-based chemicals by extremophiles. Curr Biotechnol 2:360–379

    Article  CAS  Google Scholar 

  • Choi J, Lee SY (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17(6):335–342

    Article  CAS  Google Scholar 

  • Diario oficial. Ley de promoción y desarrollo de los bionergéticos. Camara de Diputados México (2008) Available from http://www.diputados.gob.mx/LeyesBiblio/pdf/LPDB.pdf [21 Feb 2016]

  • Dotsch A, Severin J, Alt W, Galinski EA, Kreft JU (2008) A mathematical model for growth and osmoregulation in halophilic bacteria. Microbiology 154:2956–2969

    Article  PubMed  CAS  Google Scholar 

  • Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74:333–335

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Lillo J, Rodriguez-Valera F (1990) Effects of culture conditions on poly(3-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56(8):2517–2521

    CAS  Google Scholar 

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2007) High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Cent Eur J Biol 2(3):364–377

    CAS  Google Scholar 

  • González-García Y, Meza-Contreras JC, González-Reynoso O, Córdova-López JA (2013) Síntesis y degradación de polihidroxialcanoatos plásticos de origen microbiano. Rev Int Contam Ambient 29:77–115

    Google Scholar 

  • Harding KG, Dennis JS, Von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130(1):57–66

    Article  PubMed  CAS  Google Scholar 

  • ISO 14040. Environmental management – life cycle assessment – principles and framework. ISO 1997. Geneva, Switzerland

    Google Scholar 

  • Jin YX, Shi LH, Kawata Y (2013) Metabolomics-based component profiling of Halomonas sp. KM-1 during different growth phases in poly(3-hydroxybutyrate) production. Bioresour Technol 140:73–79

    Article  PubMed  CAS  Google Scholar 

  • King D (2010) The future of industrial biorefineries. World Economic Forum, Switzerland

    Google Scholar 

  • Koller M, Muhr A (2014) Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate) (PHA) bio-production. Chem Biochem Eng 28(1):65–77

    CAS  Google Scholar 

  • Koller M, Horvat P, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G (2006) Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioprocess Biosyst Eng 29:367–377

    Article  PubMed  CAS  Google Scholar 

  • Koller M, Atlic A, Gonzalez-Garcia Y, Kutschera C, Braunegg G (2008) Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 272:87–92

    Article  CAS  Google Scholar 

  • Kumar R, Nanavati H, Noronha SB, Mahajani SM (2006) A continuous process for the recovery of lactic acid by reactive distillation. J Chem Technol Biotechnol 81:1767–1777

    Article  CAS  Google Scholar 

  • Lorantfy B, Seyer B, Herwig C (2014) Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor. New Biotechnol 31(1):80–89

    Article  CAS  Google Scholar 

  • Martinez-Hernandez E, Campbell G, Sadhukhan J (2013a) Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chem Eng Res Des 91(8):1418–1426

    Article  CAS  Google Scholar 

  • Martinez-Hernandez E, Sadhukhan J, Campbell GM (2013b) Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis. Appl Energy 104:517–526

    Article  CAS  Google Scholar 

  • Mudliar SN, Vaidya AN, Kumar MS, Dahikar S, Chakrabarti T (2008) Techno-economic evaluation of PHB production from activated sludge. Clean Techn Environ Policy 10:255–262

    Article  CAS  Google Scholar 

  • NNFCC. National Non-Food Crops Centre 2016. www.nnfcc.co.uk [Last accessed Jan 2017]

  • Patel M, Ou MS, Ingram LO, Shanmuga KT (2004) Fermentation of sugar cane bagasse hemicellulose hydrolysate to l(+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnol Lett 26(11):865–868

    Article  PubMed  CAS  Google Scholar 

  • Patel MA, Ou MS, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog 21:1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Ramírez N, Serrano JA, Sandoval H (2006) Microorganismos extremófilos. Actinomicetos halófilos en México. Revista Mexicana de Ciencias Farmaceúticas 37:56–71

    Google Scholar 

  • Rathi DN, Amir HG, Abed RM, Kosugi A, Arai T, Sulaiman O, Hashim R, Sudesh K (2013) Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 114(2):384–395

    Article  PubMed  CAS  Google Scholar 

  • Sadhukhan J, Ng KS, Martinez-Hernandez E (2014) Biorefineries and chemical processes: design, integration and sustainability analysis. Wiley, Chichester

    Book  Google Scholar 

  • Satchatippavarn S, Martinez-Hernandez E, Leung Pah Hang MY, Leach M, Yang A (2016) Urban biorefinery for waste processing. J Chem Eng Res Des 107:81–90

    Article  CAS  Google Scholar 

  • Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San Diego

    Google Scholar 

  • Thinkstep Gabi Software (2016) http://www.gabi-software.com/databases/ecoinvent/ [Last accessed Jan 2017]

  • Wan YK, Sadhukhan J, Ng DKS (2016) Techno-economic evaluations for feasibility of sago-based biorefinery, Part 2: Integrated bioethanol production and energy systems. Chem Eng Res Des 107:102–116

    Article  CAS  Google Scholar 

  • Xu M, Smith R, Sadhukhan J (2008) Optimization of productivity and thermodynamic performance of metabolic pathways. Ind Eng Chem Res 47(15):5669–5679

    Article  CAS  Google Scholar 

  • Ye L, Hudari MSB, Li Z, Wu JC (2014) Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem Eng J 83:16–21

    Article  CAS  Google Scholar 

  • Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15(5):611–618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the National Science Foundation in the form of BuG ReMeDEE initiative (Award # 1736255) is gratefully acknowledged by the editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Martinez-Hernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez-Hernandez, E., Ng, K.S., Amezcua Allieri, M.A., Aburto Anell, J.A., Sadhukhan, J. (2018). Value-Added Products from Wastes Using Extremophiles in Biorefineries: Process Modeling, Simulation, and Optimization Tools. In: Sani, R., Krishnaraj Rathinam, N. (eds) Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. https://doi.org/10.1007/978-3-319-74459-9_14

Download citation

Publish with us

Policies and ethics